Skip to main content
Log in

Aluminum-based nanocomposites with hybrid reinforcements prepared by mechanical alloying and selective laser melting consolidation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, Aluminum-based nanocomposites with hybrid reinforcements were successfully prepared by mechanical alloying, followed by consolidation using selective laser melting (SLM). The evolution of particle morphology and microstructural features of the milled powders at various milling times was studied. The results indicated that the milled powder particles experienced a coarsening stage at the early 5 h milling and followed by a continuous refinement during 5–20 h milling. After 20 h of milling, the original coarse needle-like Al3.21Si0.47 evolved into nanometer/submicrometer-sized spherical Al3.21Si0.47. Meanwhile, both fine Al3.21Si0.47 and ex-situ nanoscale TiN particles distributed uniformly within the Al matrix. By SLM processing of the 20-h powder, a near fully dense part with a uniform microstructure consisting of circularly dispersed and submicrometer-sized reinforcement particles embedded in α-Al matrix was obtained. The Vickers hardness and coefficient of friction of the SLM-processed part reached 178 HV0.1 and 0.38, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. P.H.C. Camargo, K.G. Satyanarayana, and F. Wypych: Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 12(1), 1 (2009).

    Article  CAS  Google Scholar 

  2. T. Sekino and K. Niihara: Microstructural characteristics and mechanical properties for Al2O3/metal nanocomposites. Nanostruct. Mater. 6(5), 663 (1995).

    Article  Google Scholar 

  3. S. Seal, S.C. Kuiry, R. Georgieva, and A. Agarwal: Manufacturing nanocomposite parts: Present status and future challenges. MRS Bull. 29(1), 16 (2004).

    Article  CAS  Google Scholar 

  4. D.L. Zhang: Processing of advanced materials using high-energy mechanical milling. Prog. Mater. Sci. 49(3), 537 (2004).

    Article  CAS  Google Scholar 

  5. S. Hwang and C. Nishimnra: Compressive mechanical properties of Mg–Ti–C nanocomposite synthesized by mechanical milling. Scr. Mater. 44(10), 2457 (2001).

    Article  CAS  Google Scholar 

  6. G. Marta, D. Jan, and M. Jerzy: Effect of reinforcement particle size on microstructure and mechanical properties of AlZnMgCu/AlN nano-composites produced using mechanical alloying. J. Alloys Compd. 586(1), S423 (2014).

    Google Scholar 

  7. M.H. Enayati and F.A. Mohamed: Application of mechanical alloying/milling for synthesis of nanocrystalline and amorphous materials. Int. Mater. Rev. 59(7), 394 (2014).

    Article  CAS  Google Scholar 

  8. D.S. Zhou, D.L. Zhang, C. Kong, P. Munroe, and R. Torrens: Thermal stability of the nanostructure of mechanically milled Cu-5 vol% Al2O3 nanocomposite powder particles. J. Mater. Res. 29(8), 996 (2014).

    Article  CAS  Google Scholar 

  9. M.S. El-Eskandarany: Mechanical solid state mixing for synthesizing of SiCp/Al nanocomposites. J. Alloys Compd. 279(2), 263 (1998).

    Article  Google Scholar 

  10. G.Q. Zhang and D.D. Gu: Synthesis of nanocrystalline TiC reinforced W nanocomposites by high-energy mechanical alloying: Microstructural evolution and its mechanism. Appl. Surf. Sci. 273, 364 (2013).

    Article  CAS  Google Scholar 

  11. J.P. Kruth, P. Mercelis, J.V. Vaerenbergh, L. Froyen, and M. Rombouts: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping J. 11(1), 26 (2005).

    Article  Google Scholar 

  12. H. Attar, M. Bönisch, M. Calin, L.C. Zhang, K. Zhuravleva, A. Funk, S. Scudino, C. Yang, and J. Eckert: Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies. J. Mater. Res. 29(17), 1941 (2014).

    Article  CAS  Google Scholar 

  13. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int. Mater. Rev. 53(3), 133 (2012).

    Article  Google Scholar 

  14. E.O. Olakanmi, R.F. Cochrane, and K.W. Dalgarno: A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog. Mater. Sci. 74, 401 (2015).

  15. B. Vrancken, L. Thijs, J.P. Kruth, and J.V. Humbeeck: Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting. Acta Mater. 68(15), 150 (2014).

    Article  CAS  Google Scholar 

  16. H.Q. Wang and D.D. Gu: Nanometric TiC reinforced AlSi10Mg nanocomposites: Powder preparation by high-energy ball milling and consolidation by selective laser melting. J. Compos. Mater. 0, 1 (2014).

  17. Z.M. Li, D. Chen, H.W. Wang, E.J. Lavernia, and A.D. Shan: Nano-TiB2 reinforced ultrafine-grained pure Al produced by flux-assisted synthesis and asymmetrical rolling. J. Mater. Res. 29(21), 2514 (2014).

    Article  CAS  Google Scholar 

  18. K.D. Woo and D.L. Zhang: Fabrication of Al–7wt%Si–0.4wt%Mg/SiC nanocomposite powders and bulk nanocomposites by high energy ball milling and powder metallurgy. Curr. Appl. Phys. 4(2), 175 (2004).

    Article  Google Scholar 

  19. L. Jiang, H.M. Wen, H.R. Yang, T. Hu, T. Topping, D.L. Zhang, E.J. Lavernia, and J.M. Schoenung: Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix. Acta Mater. 89, 327 (2015).

    Article  CAS  Google Scholar 

  20. D. Poirier, R. Gauvin, and R.A.L. Drew: Characterization of the fabrication steps of a CNTs-al nanocomposite. Microsc. Microanal. 13, 668 (2007).

    Article  Google Scholar 

  21. E. Mohammad Sharifi and F. Karimzadeh: Wear behavior of aluminum matrix hybrid nanocomposites fabricated by powder metallurgy. Wear 271, 1072 (2011).

    Article  Google Scholar 

  22. C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci. 46(1), 1 (2001).

    Article  CAS  Google Scholar 

  23. I. Yamauchi, K. Takahara, T. Tanaka, and K. Matsubara: Chemical leaching of rapidly solidified Al–Si binary alloys. J. Alloys Compd. 396(1), 302 (2005).

    Article  CAS  Google Scholar 

  24. E. Karakose and M. Keskin: Effect of solidification rate on the microstructure and microhardness of a melt-spun Al–8Si–1Sb alloy. J. Alloys Compd. 476(1), 230 (2009).

    Article  Google Scholar 

  25. X.X. Dong, L.J. He, and G.B. Mi: Two directional microstructure and effects of nanoscale dispersed Si particles on microhardness and tensile properties of AlSi7Mg melt-spun alloy. J. Alloys Compd. 618, 609 (2015).

    Article  CAS  Google Scholar 

  26. A. Bendijk, R. Delhez, L. Katgerman, T.H. De Keijser, E.J. Mittemeijer, and N.M. Van Der Pers: Characterization of Al–Si-alloys rapidly quenched from the melt. J. Mater. Sci. 15(11), 2803 (1980).

    Article  CAS  Google Scholar 

  27. E.J. Mittemeijer: Fundamentals of Materials Science, 1st ed. (Springer-Verlag Berlin Heidelberg, Berlin, 2010); p. 154.

    Google Scholar 

  28. C.R. Clark, C. Suryanarayana, and F.H. Froes: Advances in Powder Metallurgy and Particulate Materials-1995: Part 1 (Metal Powder Industries Federation, Princeton, NJ, 1995); pp. 135–145.

    Google Scholar 

  29. X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, and K. Lu: Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of AL-alloy subjected to USSP. Acta Mater. 50(8), 2075 (2002).

    Article  CAS  Google Scholar 

  30. N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, and K. Lu: An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 50(18), 4603 (2002).

    Article  CAS  Google Scholar 

  31. M. Wen, G. Liu, J.F. Gu, W.M. Guan, and J. Lu: Dislocation evolution in titanium during surface severe plastic deformation. Appl. Surf. Sci. 255(12), 6097 (2009).

    Article  CAS  Google Scholar 

  32. J.B. Fogagnolo, F. Velasco, M.H. Robert, and J.M. Torralba: Effect of mechanical alloying on the morphology, microstructure and properties of aluminum matrix composite powders. Mater. Sci. Eng., A 342(1), 131 (2003).

    Article  Google Scholar 

  33. S.B. Sun, L.J. Zheng, Y.Y. Liu, J.H. Liu, and H. Zhang: Characterization of Al–Fe–V–Si heat-resistant aluminum alloy components fabricated by selective laser melting. J. Mater. Res. 30(10), 1661 (2015).

    Article  CAS  Google Scholar 

  34. J.P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs: Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. Manuf. Technol. 56(2), 730 (2007).

    Article  Google Scholar 

  35. D.D. Gu: Laser Additive Manufacturing of High-Performance Materials (Springer-Verlag Berlin Heidelberg, Berlin, 2015); pp. 175–198.

    Google Scholar 

  36. D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, and J. Bultmann: High power selective laser melting (HP SLM) of aluminum parts. Phys. Proc. 12, 271 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We appreciate the financial support from the National Natural Science Foundation of China (No. 51322509), the Outstanding Youth Foundation of Jiangsu Province of China (No. BK20130035), the Program for New Century Excellent Talents in University (No. NCET-13-0854), the Science and Technology Support Program (The Industrial Part), Jiangsu Provincial Department of Science and Technology of China (No. BE2014009-2), and the Fundamental Research Funds for the Central Universities (Nos. NE2013103 and NP2015206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Gu, D., Dai, D. et al. Aluminum-based nanocomposites with hybrid reinforcements prepared by mechanical alloying and selective laser melting consolidation. Journal of Materials Research 30, 2816–2828 (2015). https://doi.org/10.1557/jmr.2015.267

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.267

Navigation