Skip to main content

Advertisement

Log in

Fe2O3–SnO2–graphene films as flexible and binder-free anode materials for lithium-ion batteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A flexible Fe2O3–SnO2–graphene (GNs) film material was synthesized based on a method of physical blending. The product is characterized by x-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and x-ray photoelectron spectroscopy. The results show that the Fe2O3–SnO2 particles are uniformly distributed among GN layers, and the film can be used as working electrode directly without any binder or conductor. The binder-free Fe2O3–SnO2–GNs film shows high charge capacity and good cycling life both in half and full cells. The Fe2O3–SnO2–GNs film delivers an initial discharge capacity of 946 mA h g−1 at 100 mA g−1 and maintains a capacity of 538 mA h g−1 after 90 cycles in half cell. For full cell, the film also exhibits a high capacity of 334 mA h g−1 at 100 mA g−1 after 30 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. M.S. Whittingham: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).

    Article  CAS  Google Scholar 

  2. M. Armand and J.M. Tarascon: Building better batteries. Nature 451, 652 (2008).

    Article  CAS  Google Scholar 

  3. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach: Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 4, 3243 (2011).

    Article  CAS  Google Scholar 

  4. K.Z. Cao, L.F. Jiao, Y.C. Liu, H.Q. Liu, Y.J. Wang, and H.T. Yuan: Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Adv. Funct. Mater. 25, 1082 (2015).

    Article  CAS  Google Scholar 

  5. A.L.M. Reddy, M.M. Shanjumon, S.R. Gowda, and P.M. Ajayan: Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano lett. 9, 1002 (2009).

    Article  CAS  Google Scholar 

  6. L. Ji, O. Toprakci, M. Alcoutlabi, Y. Yao, Y. Li, S. Zhang, B. Guo, Z. Lin, and X. Zhang: α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. ASC Appl. Mater. Interfaces. 4, 2672 (2012).

    Article  CAS  Google Scholar 

  7. M.V. Reddy, T. Yu, C.H. Sow, Z.X. Shen, C.T. Lim, G.V. Subba Rao, and B.V.R. Chowdari: α-Fe2O3 Nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 17, 2792 (2007).

    Article  CAS  Google Scholar 

  8. W.J. Yu, P.X. Hou, L.L. Zhang, F. Li, C. Liu, and H.M. Cheng: Preparation and electrochemical property of Fe2O3 nanoparticles-filled carbon nanotubes. Chem. Commun. 46, 8576 (2010).

    Article  CAS  Google Scholar 

  9. Y. Zhao, J. Li, Y. Ding, and L. Guan: Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries. Chem. Commun. 47, 7416 (2011).

    Article  CAS  Google Scholar 

  10. J.G. Ren, J.B. Yang, A. Abouimrane, D.P. Wang, and K. Amine: SnO2 nanocrystals deposited on multiwalled carbon nanotubes with superior stability as anode material for Li-ion batteries. J. Power Sources 196, 8701 (2011).

    Article  CAS  Google Scholar 

  11. W.W. Zhou, C.W. Cheng, J.P. Liu, Y.Y. Tay, J. Jiang, X.T. Jia, J.X. Zhang, H. Gong, H.H. Hng, T. Yu, and H.J. Fan: Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 21, 2439 (2011).

    Article  CAS  Google Scholar 

  12. W.M. Zhang, X.L. Wu, J.S. Hu, Y.G. Guo, and L.J. Wan: Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 18, 3941 (2008).

    Article  CAS  Google Scholar 

  13. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.M. Tarascon: Nano-sized transition-metal oxide as negative-electrode materials for lithium-ion batteries. Nature. 407, 496 (2000).

    Article  CAS  Google Scholar 

  14. H.B. Wu, J.S. Chen, H.H. Hng, and X.W. Lou: Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale. 4, 2526 (2012).

    Article  CAS  Google Scholar 

  15. R.J. Chen, T. Zhao, W.P. Wu, F. Wu, L. Li, J. Qian, R. Xu, H.M. Wu, H.M. Albishri, A.S. Al-Bogami, D.A. El-Hady, J. Lu, and K. Amine: Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano lett. 14, 5899 (2014).

    Article  CAS  Google Scholar 

  16. F.W. Yuan, H.J. Yang, and H.Y. Tuan: Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: The role of chemical surface functionalization. ACS Nano 6, 9932 (2012).

    Article  CAS  Google Scholar 

  17. J.S. Chen, Y.L. Cheah, Y.T. Chen, N. Jayaprakash, S. Madhavi, Y.H. Yang, and X.W. Lou: SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. J. Phys. Chem., C 113, 20504 (2009).

    Article  CAS  Google Scholar 

  18. X.L. Jia, Y.H. Cheng, Y.F. Lu, and F. Wei: Building robust carbon nanotube-interweaved-nanocrystal architecture for high-performance anode materials. ACS Nano 8, 9265 (2014).

    Article  CAS  Google Scholar 

  19. A.K. Geim, K.S. Novoselov: The rise of graphene. Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  20. H.J. Kim, X.K. Huang, X.R. Guo, Z.H. Wen, S.M. Cui, and J.H. Chen: Novel hybrid carbon nanofiber/highly branched graphene nanosheet for anode materials in lithium-ion batteries. ACS Appl. Mater. Interfaces. 6, 18590 (2014).

    Article  CAS  Google Scholar 

  21. C.N. He, S. Wu, N.Q. Zhao, C.S. Shi, E.Z. Liu, and J.J. Li: Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7, 4459 (2013).

    Article  CAS  Google Scholar 

  22. T. Li, Y.Y. Wang, R. Tang, Y.X. Qi, N. Lun, Y.J. Bai, and R.H. Fan: Carbon-coated Fe-Mn-O composites as promising anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 9470 (2013).

    Article  CAS  Google Scholar 

  23. L. Xiao, D.Q. Wu, H. Sheng, Y.S. Huang, S. Li, M.Z. He, F. Zhang, and X.L. Feng: Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Appl. Mater. Interfaces. 5, 3764 (2013).

    Article  CAS  Google Scholar 

  24. T.Z. Yuan, Y.Z. Jiang, Y. Li, D. Zhang, and M. Yan: Enhanced lithium storage performance in three-dimensional porous SnO2-Fe2O3 composite anode films. Electrochim. Acta. 136, 27 (2014).

    Article  CAS  Google Scholar 

  25. G.F. Xia, N. Li, D.Y. Li, R.Q. Liu, C. Wang, Q. Li, X.J. Lü, J.S. Spendelow, J.L. Zhang, and G.L. Wu: Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries. ACS Appl. Mater. Interfaces 5, 8607 (2013).

    Article  CAS  Google Scholar 

  26. W. Wang, I. Ruiz, S. Guo, Z.C. Favors, H.H. Bay, M. Ozkan, and C.S. Ozkan: Hybrid carbon nanotube and graphene nanostructures for lithium ion battery anodes. Nano Energy 3, 113 (2014).

    Article  CAS  Google Scholar 

  27. L.J. Wan, Z.Y. Ren, H. Wang, G. Wang, X. Tong, S.H. Gao, and J.T. Bai: Graphene nanosheets based on controlled exfoliation process for enhanced lithium storage in lithium-ion battery. Diamond Relat. Mater. 20, 756 (2011).

    Article  CAS  Google Scholar 

  28. X.Q. Su, G. Wang, W.L. Li, J.B. Bai, and H. Wang: A simple method for preparing graphene nano-sheets at low temperature. Adv. Powder. Technol. 24, 317 (2013).

    Article  CAS  Google Scholar 

  29. M.T. Niu, F. Huang, L.F. Cui, P. Huang, Y.L. Yu, and Y.S. Wang: Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/alpha-Fe2O3 semiconductor nanoheterostructures. ACS Nano 2, 681 (2010).

    Article  CAS  Google Scholar 

  30. D.F. Zhang, L.D. Sun, C.J. Jia, Z.G. Yan, L.P. You, and C.H. Yan: Hierarchical assembly of SnO2 nanorod arrays on Fe2O3 nanotubes: A case of interfacial lattice compatibility. J. Am. Chem. Soc. 127, 13492 (2005).

    Article  CAS  Google Scholar 

  31. S.Y. Kim, J. Hong, R. Kavian, S.W. Lee, M.N. Hyder, Y.S. Horn, and P.T. Hammond: Rapid fabrication of thick spray-layer-by-layer carbon nanotube electrodes for high power and energy devices. Energy Environ. Sci. 6, 888 (2013).

    Article  CAS  Google Scholar 

  32. J. Qu, Y.X. Yin, Y.Q. Wang, Y. Yan, Y.G. Guo, and W.G. Song: Layer structured α-Fe2O3 nanodisk/reduced graphene oxide composites as high-performance anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 3932 (2013).

    Article  CAS  Google Scholar 

  33. D.N. Lei, M. Zhang, B.H. Qu, L.B. Chen, Y.G. Wang, E. Zhang, Z. Xu, Q.H. Li, and T.H. Wang: α-Fe2O3 nanowall arrays: hydrothermal preparation, growth mechanism and excellent rate performances for lithium ion batteries. Nanoscale 4, 3422 (2012).

    Article  CAS  Google Scholar 

  34. G.K. Pradhan, K.H. Reddy, and K.M. Parida: Facile fabrication of mesoporous α-Fe2O3/SnO2 nanoheterostructure for photocatalytic degradation of malachite green. Catal. Today 224, 171 (2014).

    Article  CAS  Google Scholar 

  35. B.B. Wang, G. Wang, Z.Z. Zheng, H. Wang, J.T. Bai, and J.B. Bai: Carbon coated Fe3O4 hybrid material prepared by chemical vapor deposition for high performance lithium-ion batteries. J. Electrochim. Acta. 106, 235 (2013).

    Article  CAS  Google Scholar 

  36. Y.Q. Zou, J. Kan, and Y. Wang: Fe2O3-graphene rice-on-sheet nanocomposite for high and fast lithium ion storage. J. Phys. Chem., C 115, 20747 (2011).

    Article  CAS  Google Scholar 

  37. Z.S. Wu, W.C. Ren, L. Wen, L.B. Gao, J.P. Zhao, Z.P. Chen, G.M. Zhou, F. Li, and H.M. Cheng: Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4, 3187 (2010).

    Article  CAS  Google Scholar 

  38. M. Mohamedi, S.J. Lee, D. Takahashi, M. Nishizawa, and T. Itoh: Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries. Electrochim. Acta 46, 1161 (2001).

    Article  CAS  Google Scholar 

  39. R.D. Cakan, Y.S. Hu, M. Antonietti, J. Maier, and M.M. Titirici: Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem. Mater. 20, 1227 (2008).

    Article  CAS  Google Scholar 

  40. J. Lin, Z. Peng, C. Xiang, G. Ruan, Z. Yan, D. Natelson, and J.M. Tour: Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7, 6001 (2013).

    Article  CAS  Google Scholar 

  41. Q. Guo, Z. Zheng, H. Gao, J. Ma, and X. Qin: SnO2/graphene composite as highly reversible anode materials for lithium ion batteries. J. Power Sources 240, 149 (2013).

    Article  CAS  Google Scholar 

  42. S.D. Seo, D.H. Lee, J.C. Kim, G.H. Lee, and D.W. Kim: Room-temperature synthesis of CuO/graphene nanocomposite electrodes for high lithium storage capacity. Ceram. Int. 39, 1749 (2013).

    Article  CAS  Google Scholar 

  43. J.Y. Xiang, J.P. Tu, Y.Q. Qiao, X.L. Wang, J. Zhong, D. Zhang, and C.D. Gu: Electrochemical impedance analysis of a hierarchical CuO electrode composed of self-assembled nanoplates. J. Phys. Chem., C 115, 2505 (2011).

    Article  CAS  Google Scholar 

  44. M.W. Xu, F. Wang, B.J. Ding, X.P. Song, and J.X. Fang: Electrochemical synthesis of leaf-like CuO mesocrystals and their lithium storage properties. RSC. Adv. 2, 2240 (2012).

    Article  CAS  Google Scholar 

  45. J.G. Kim, S.H. Nam, S.H. HO Lee, S.M. Choi, and W.B. Kim: SnO2 nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage. ACS Appl. Mater. Interface. 3, 828 (2011).

    Article  CAS  Google Scholar 

  46. C.H. Xu, J. Sun, and L. Gao: Synthesis of multiwalled carbon nanotubes that are both filled and coated by SnO2 nanoparticles and their high performance in lithium-ion batteries. J. Phys. Chem., C 113, 20509 (2009).

    Article  CAS  Google Scholar 

  47. E.S. Hany, S.S. Anne, N. Manuel, L. Thomas, and J. Jürgen: FeOx-coated SnO2 as an anode material for lithium ion batteries. J. Phys. Chem., C. 118, 8818 (2014).

    Article  CAS  Google Scholar 

  48. P. Wu, N. Du, H. Zhang, C.X. Zhai, and D.R. Yang: Self-templating synthesis of SnO2-carbon hybrid hollow spheres for superior reversible lithium ion storage. ACS Appl. Mater. Interfaces. 3, 1946 (2011).

    Article  CAS  Google Scholar 

  49. M.M. Rahman, J.Z. Wang, M.F. Hassan, D. Wexler, and H.K. Liu: Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12-TiO2: A nanocomposite anode material for Li-ion batteries.Adv. Energy Mater. 1, 212 (2011).

    Article  CAS  Google Scholar 

  50. S.H. Choi, Y.N. Ko, J.K. Lee, and Y.C. Kang: 3D MoS2–graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 25, 1780 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the financial supports of the National Natural Science Foundation of China (Nos. 21061130551 and 21301140), and the Xi’an Industrial Technology Innovation Project-technology transfer promoting program (No. CXY1438-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F., Wang, H. Fe2O3–SnO2–graphene films as flexible and binder-free anode materials for lithium-ion batteries. Journal of Materials Research 30, 2736–2746 (2015). https://doi.org/10.1557/jmr.2015.265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.265

Navigation