Abstract
A flexible Fe2O3–SnO2–graphene (GNs) film material was synthesized based on a method of physical blending. The product is characterized by x-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and x-ray photoelectron spectroscopy. The results show that the Fe2O3–SnO2 particles are uniformly distributed among GN layers, and the film can be used as working electrode directly without any binder or conductor. The binder-free Fe2O3–SnO2–GNs film shows high charge capacity and good cycling life both in half and full cells. The Fe2O3–SnO2–GNs film delivers an initial discharge capacity of 946 mA h g−1 at 100 mA g−1 and maintains a capacity of 538 mA h g−1 after 90 cycles in half cell. For full cell, the film also exhibits a high capacity of 334 mA h g−1 at 100 mA g−1 after 30 cycles.
Similar content being viewed by others
References
M.S. Whittingham: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).
M. Armand and J.M. Tarascon: Building better batteries. Nature 451, 652 (2008).
V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach: Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 4, 3243 (2011).
K.Z. Cao, L.F. Jiao, Y.C. Liu, H.Q. Liu, Y.J. Wang, and H.T. Yuan: Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Adv. Funct. Mater. 25, 1082 (2015).
A.L.M. Reddy, M.M. Shanjumon, S.R. Gowda, and P.M. Ajayan: Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano lett. 9, 1002 (2009).
L. Ji, O. Toprakci, M. Alcoutlabi, Y. Yao, Y. Li, S. Zhang, B. Guo, Z. Lin, and X. Zhang: α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries. ASC Appl. Mater. Interfaces. 4, 2672 (2012).
M.V. Reddy, T. Yu, C.H. Sow, Z.X. Shen, C.T. Lim, G.V. Subba Rao, and B.V.R. Chowdari: α-Fe2O3 Nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 17, 2792 (2007).
W.J. Yu, P.X. Hou, L.L. Zhang, F. Li, C. Liu, and H.M. Cheng: Preparation and electrochemical property of Fe2O3 nanoparticles-filled carbon nanotubes. Chem. Commun. 46, 8576 (2010).
Y. Zhao, J. Li, Y. Ding, and L. Guan: Single-walled carbon nanohorns coated with Fe2O3 as a superior anode material for lithium ion batteries. Chem. Commun. 47, 7416 (2011).
J.G. Ren, J.B. Yang, A. Abouimrane, D.P. Wang, and K. Amine: SnO2 nanocrystals deposited on multiwalled carbon nanotubes with superior stability as anode material for Li-ion batteries. J. Power Sources 196, 8701 (2011).
W.W. Zhou, C.W. Cheng, J.P. Liu, Y.Y. Tay, J. Jiang, X.T. Jia, J.X. Zhang, H. Gong, H.H. Hng, T. Yu, and H.J. Fan: Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 21, 2439 (2011).
W.M. Zhang, X.L. Wu, J.S. Hu, Y.G. Guo, and L.J. Wan: Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 18, 3941 (2008).
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.M. Tarascon: Nano-sized transition-metal oxide as negative-electrode materials for lithium-ion batteries. Nature. 407, 496 (2000).
H.B. Wu, J.S. Chen, H.H. Hng, and X.W. Lou: Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale. 4, 2526 (2012).
R.J. Chen, T. Zhao, W.P. Wu, F. Wu, L. Li, J. Qian, R. Xu, H.M. Wu, H.M. Albishri, A.S. Al-Bogami, D.A. El-Hady, J. Lu, and K. Amine: Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano lett. 14, 5899 (2014).
F.W. Yuan, H.J. Yang, and H.Y. Tuan: Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: The role of chemical surface functionalization. ACS Nano 6, 9932 (2012).
J.S. Chen, Y.L. Cheah, Y.T. Chen, N. Jayaprakash, S. Madhavi, Y.H. Yang, and X.W. Lou: SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. J. Phys. Chem., C 113, 20504 (2009).
X.L. Jia, Y.H. Cheng, Y.F. Lu, and F. Wei: Building robust carbon nanotube-interweaved-nanocrystal architecture for high-performance anode materials. ACS Nano 8, 9265 (2014).
A.K. Geim, K.S. Novoselov: The rise of graphene. Nat. Mater. 6, 183 (2007).
H.J. Kim, X.K. Huang, X.R. Guo, Z.H. Wen, S.M. Cui, and J.H. Chen: Novel hybrid carbon nanofiber/highly branched graphene nanosheet for anode materials in lithium-ion batteries. ACS Appl. Mater. Interfaces. 6, 18590 (2014).
C.N. He, S. Wu, N.Q. Zhao, C.S. Shi, E.Z. Liu, and J.J. Li: Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7, 4459 (2013).
T. Li, Y.Y. Wang, R. Tang, Y.X. Qi, N. Lun, Y.J. Bai, and R.H. Fan: Carbon-coated Fe-Mn-O composites as promising anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 9470 (2013).
L. Xiao, D.Q. Wu, H. Sheng, Y.S. Huang, S. Li, M.Z. He, F. Zhang, and X.L. Feng: Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Appl. Mater. Interfaces. 5, 3764 (2013).
T.Z. Yuan, Y.Z. Jiang, Y. Li, D. Zhang, and M. Yan: Enhanced lithium storage performance in three-dimensional porous SnO2-Fe2O3 composite anode films. Electrochim. Acta. 136, 27 (2014).
G.F. Xia, N. Li, D.Y. Li, R.Q. Liu, C. Wang, Q. Li, X.J. Lü, J.S. Spendelow, J.L. Zhang, and G.L. Wu: Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries. ACS Appl. Mater. Interfaces 5, 8607 (2013).
W. Wang, I. Ruiz, S. Guo, Z.C. Favors, H.H. Bay, M. Ozkan, and C.S. Ozkan: Hybrid carbon nanotube and graphene nanostructures for lithium ion battery anodes. Nano Energy 3, 113 (2014).
L.J. Wan, Z.Y. Ren, H. Wang, G. Wang, X. Tong, S.H. Gao, and J.T. Bai: Graphene nanosheets based on controlled exfoliation process for enhanced lithium storage in lithium-ion battery. Diamond Relat. Mater. 20, 756 (2011).
X.Q. Su, G. Wang, W.L. Li, J.B. Bai, and H. Wang: A simple method for preparing graphene nano-sheets at low temperature. Adv. Powder. Technol. 24, 317 (2013).
M.T. Niu, F. Huang, L.F. Cui, P. Huang, Y.L. Yu, and Y.S. Wang: Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/alpha-Fe2O3 semiconductor nanoheterostructures. ACS Nano 2, 681 (2010).
D.F. Zhang, L.D. Sun, C.J. Jia, Z.G. Yan, L.P. You, and C.H. Yan: Hierarchical assembly of SnO2 nanorod arrays on Fe2O3 nanotubes: A case of interfacial lattice compatibility. J. Am. Chem. Soc. 127, 13492 (2005).
S.Y. Kim, J. Hong, R. Kavian, S.W. Lee, M.N. Hyder, Y.S. Horn, and P.T. Hammond: Rapid fabrication of thick spray-layer-by-layer carbon nanotube electrodes for high power and energy devices. Energy Environ. Sci. 6, 888 (2013).
J. Qu, Y.X. Yin, Y.Q. Wang, Y. Yan, Y.G. Guo, and W.G. Song: Layer structured α-Fe2O3 nanodisk/reduced graphene oxide composites as high-performance anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 3932 (2013).
D.N. Lei, M. Zhang, B.H. Qu, L.B. Chen, Y.G. Wang, E. Zhang, Z. Xu, Q.H. Li, and T.H. Wang: α-Fe2O3 nanowall arrays: hydrothermal preparation, growth mechanism and excellent rate performances for lithium ion batteries. Nanoscale 4, 3422 (2012).
G.K. Pradhan, K.H. Reddy, and K.M. Parida: Facile fabrication of mesoporous α-Fe2O3/SnO2 nanoheterostructure for photocatalytic degradation of malachite green. Catal. Today 224, 171 (2014).
B.B. Wang, G. Wang, Z.Z. Zheng, H. Wang, J.T. Bai, and J.B. Bai: Carbon coated Fe3O4 hybrid material prepared by chemical vapor deposition for high performance lithium-ion batteries. J. Electrochim. Acta. 106, 235 (2013).
Y.Q. Zou, J. Kan, and Y. Wang: Fe2O3-graphene rice-on-sheet nanocomposite for high and fast lithium ion storage. J. Phys. Chem., C 115, 20747 (2011).
Z.S. Wu, W.C. Ren, L. Wen, L.B. Gao, J.P. Zhao, Z.P. Chen, G.M. Zhou, F. Li, and H.M. Cheng: Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4, 3187 (2010).
M. Mohamedi, S.J. Lee, D. Takahashi, M. Nishizawa, and T. Itoh: Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries. Electrochim. Acta 46, 1161 (2001).
R.D. Cakan, Y.S. Hu, M. Antonietti, J. Maier, and M.M. Titirici: Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem. Mater. 20, 1227 (2008).
J. Lin, Z. Peng, C. Xiang, G. Ruan, Z. Yan, D. Natelson, and J.M. Tour: Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7, 6001 (2013).
Q. Guo, Z. Zheng, H. Gao, J. Ma, and X. Qin: SnO2/graphene composite as highly reversible anode materials for lithium ion batteries. J. Power Sources 240, 149 (2013).
S.D. Seo, D.H. Lee, J.C. Kim, G.H. Lee, and D.W. Kim: Room-temperature synthesis of CuO/graphene nanocomposite electrodes for high lithium storage capacity. Ceram. Int. 39, 1749 (2013).
J.Y. Xiang, J.P. Tu, Y.Q. Qiao, X.L. Wang, J. Zhong, D. Zhang, and C.D. Gu: Electrochemical impedance analysis of a hierarchical CuO electrode composed of self-assembled nanoplates. J. Phys. Chem., C 115, 2505 (2011).
M.W. Xu, F. Wang, B.J. Ding, X.P. Song, and J.X. Fang: Electrochemical synthesis of leaf-like CuO mesocrystals and their lithium storage properties. RSC. Adv. 2, 2240 (2012).
J.G. Kim, S.H. Nam, S.H. HO Lee, S.M. Choi, and W.B. Kim: SnO2 nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage. ACS Appl. Mater. Interface. 3, 828 (2011).
C.H. Xu, J. Sun, and L. Gao: Synthesis of multiwalled carbon nanotubes that are both filled and coated by SnO2 nanoparticles and their high performance in lithium-ion batteries. J. Phys. Chem., C 113, 20509 (2009).
E.S. Hany, S.S. Anne, N. Manuel, L. Thomas, and J. Jürgen: FeOx-coated SnO2 as an anode material for lithium ion batteries. J. Phys. Chem., C. 118, 8818 (2014).
P. Wu, N. Du, H. Zhang, C.X. Zhai, and D.R. Yang: Self-templating synthesis of SnO2-carbon hybrid hollow spheres for superior reversible lithium ion storage. ACS Appl. Mater. Interfaces. 3, 1946 (2011).
M.M. Rahman, J.Z. Wang, M.F. Hassan, D. Wexler, and H.K. Liu: Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12-TiO2: A nanocomposite anode material for Li-ion batteries.Adv. Energy Mater. 1, 212 (2011).
S.H. Choi, Y.N. Ko, J.K. Lee, and Y.C. Kang: 3D MoS2–graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 25, 1780 (2015).
ACKNOWLEDGMENTS
This work was supported by the financial supports of the National Natural Science Foundation of China (Nos. 21061130551 and 21301140), and the Xi’an Industrial Technology Innovation Project-technology transfer promoting program (No. CXY1438-7).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lin, F., Wang, H. Fe2O3–SnO2–graphene films as flexible and binder-free anode materials for lithium-ion batteries. Journal of Materials Research 30, 2736–2746 (2015). https://doi.org/10.1557/jmr.2015.265
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2015.265