Skip to main content
Log in

Cation and vacancy disorder in U1−yNdyO2.00−x alloys

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present article, the intermixing and clustering of U/Nd, O, and vacancies were studied by both laboratory and synchrotron-based x-ray diffraction in U1−yNdyO2−x alloys. It was found that an increased holding time at the high experimental temperature during initial alloy preparation results in a lower disorder of the Nd distribution in the alloys. Adjustment of the oxygen concentration in the U1−yNdyO2−x alloys with different Nd concentrations was accompanied by the formation of vacancies on the oxygen sublattice and a nanocrystalline component. The lattice parameters in the U1−yNdyO2−x alloys were also found to deviate significantly from Vegard’s law when the Nd concentration was high (53%) and decreased with increasing oxygen concentration. Such changes indicate the formation of large vacancy concentrations during oxygen adjustment at these high temperatures. The change in the vacancy concentration after the oxygen adjustment was estimated relative to Nd concentration and oxygen stoichiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14

Similar content being viewed by others

References

  1. A.M. Fedosseev, M.S. Grigoriev, N.A. Budantseva, D. Guillaumont, C. Le Naour, E. Simoni, C. Den Auwer, and P. Moisy: Americium(III) coordination chemistry: An unexplored diversity of structure and bonding. C. R. Chim. 13(6–7), 839 (2010).

    Article  CAS  Google Scholar 

  2. W.J. Weber, R.C. Ewing, C.R.A. Catlow, T. Diaz de la Rubia, L.W. Hobbs, C. Kinoshita, Hj. Matzke, A.T. Motta, M. Nastasi, E.K.H. Salje, E.R. Vance, and S.J. Zinkle: Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13(6), 1434 (1998).

    Article  CAS  Google Scholar 

  3. V. Cocalia, K. Gutowski, and R. Rogers: The coordination chemistry of actinides in ionic liquids: A review of experiment and simulation. Coord. Chem. Rev. 250(7–8), 755 (2006).

    Article  CAS  Google Scholar 

  4. Z. Szabo, T. Toraishi, V. Vallet, and I. Grenthe: Solution coordination chemistry of actinides: Thermodynamics, structure and reaction mechanisms. Coord. Chem. Rev. 250(7–8), 784 (2006).

    Article  CAS  Google Scholar 

  5. S.C. Middleburgh, R.W. Grimes, K.H. Desai, P.R. Blair, L. Hallstadius, K. Backman, and P. Van Uffelen: Swelling due to fission products and additives dissolved within the uranium dioxide lattice. J. Nucl. Mater. 427(1–3), 359 (2012).

    Article  CAS  Google Scholar 

  6. S.C. Middleburgh, D.C. Parfitt, R.W. Grimes, B. Dorado, M. Bertolus, P.R. Blair, L. Hallstadius, and K. Backman: Solution of trivalent cations into uranium dioxide. J. Nucl. Mater. 420, 268 (2012).

    Article  CAS  Google Scholar 

  7. K.E. Sickafus, R.W. Grimes, J.A. Valdez, A. Cleave, M. Tang, M. Ishimaru, S.M. Corish, C.R. Stanek, and B.P. Uberuaga: Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nat. Mater. 6(3), 217 (2007).

    Article  CAS  Google Scholar 

  8. M. Denecke: Actinide speciation using X-ray absorption fine structure spectroscopy. Coord. Chem. Rev. 250(7–8), 730 (2006).

    Article  CAS  Google Scholar 

  9. C. Fillaux, C. Den Auwer, D. Guillaumont, D.K. Shuh, and T. Tyliszczak: Investigation of actinide compounds by coupling X-ray absorption spectroscopy and quantum chemistry. J. Alloys Compd. 444–445, 443 (2007).

    Article  CAS  Google Scholar 

  10. C. Fillaux, J-C. Berthet, S.D. Conradson, P. Guilbaud, D. Guillaumont, C. Hennig, P. Moisy, J. Roques, E. Simoni, D.K. Shuh, T. Tyliszczak, I. Castro-Rodriguez, and C. Den Auwer: Combining theoretical chemistry and XANES multi-edge experiments to probe actinide valence states. C. R. Chim. 10(10–11), 859 (2007).

    Article  CAS  Google Scholar 

  11. K.N. Raymond, D.L. Wellman, C. Sgarlata, and A.P. Hill: Curvature of the lanthanide contraction: An explanation. C. R. Chim. 13(6–7), 849 (2010).

    Article  CAS  Google Scholar 

  12. H. Xue, R. Verma, and J-M. Shreeve: Review of ionic liquids with fluorine-containing anions. J. Fluorine Chem. 127(2), 159 (2006).

    Article  CAS  Google Scholar 

  13. T. Ohmichi, S. Fukushima, A. Maeda, and H. Watanabe: On the relation between lattice parameter and O/M ratio for uranium dioxide-trivalent rare earth oxide solid solution. J. Nucl. Mater. 102, 40 (1981).

    Article  CAS  Google Scholar 

  14. H.W. Goldstein, E.F. Neilson, P.N. Walsh, and D. White: The heat capacities of yttrium oxide (Y2O3), lanthanum oxide (La2O3), and neodymium oxide (Nd2O3) from 16 to 300 degrees K. J. Phys. Chem. 631445, (1959).

    Article  CAS  Google Scholar 

  15. O.S. Vălu, D. Staicu, O. Beneš, R.J.M. Konings, and P. Lajarge: Heat capacity, thermal conductivity and thermal diffusivity of uranium–americium mixed oxides. J. Alloys Compd. V 614, 144 (2014).

    Article  CAS  Google Scholar 

  16. M.I. Lelet, E.V. Suleimanov, A.V. Golubev, C.A. Geiger, W. Depmeier, D. Bosbach, and E.V. Alekseev: Thermodynamic properties and behaviour of A2[(UO2)(MoO4)2] compounds with A=Li, Na, K, Rb, and Cs. J. Chem. Thermodyn. 79, 205 (2014).

    Article  CAS  Google Scholar 

  17. B.A. Mamedov: Accurate analytical evaluation of heat capacity of nuclear fuels using Einstein-Debye approximation. Nucl. Eng. Des. 276, 124 (2014).

    Article  CAS  Google Scholar 

  18. Y.F. Zhang, P.C. Millett, M.R. Tonks, X.M. Bai, and S.B. Biner: Molecular dynamics simulations of intergranular fracture in UO2 with nine empirical interatomic potentials. J. Nucl. Mater. 452(1–3), 296 (2014).

    Article  CAS  Google Scholar 

  19. C. Guéneau, N. Dupin, B. Sundman, C. Martial, J-C. Dumas, S. Gossé, S. Chatain, F. De Bruycker, D. Manara, and R.J.M. Konings: Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the U–Pu–O–C systems. J. Nucl. Mater. 419(1–3), 145 (2011).

    Article  CAS  Google Scholar 

  20. A.G. Matveeva, M.S. Grigoriev, T.K. Dvoryanchikova, S.V. Matveev, A.M. Safiulina, O.A. Sinegribova, M.P. Passechnik, I.A. Godovikov, D.A. Tatarinov, V.F. Mironov, and I.G. Tananaev: Complexes of (2-methyl-4-oxopent-2-yl)diphenylphosphine oxide with uranyl and neodymium nitrates: Synthesis and structures in the solid state and in solution. Russ. Chem. Bull. 61(2), 399 (2012).

    Article  CAS  Google Scholar 

  21. J.W. McMurray, D. Shin, B.W. Slone, and T.M. Besmann: Thermodynamic reassessment of U-Gd-O system. J. Nucl. Mater. 452(1–3), 397 (2014).

    Article  CAS  Google Scholar 

  22. W. Huang and H. Chen: Investigation of the elastic, hardness, and thermodynamic properties of actinide oxides. Phys. B: Condens. Matter 449, 133 (2014).

    Article  CAS  Google Scholar 

  23. Y.N. Hou, X.T. Xu, N. Xing, F.Y. Bai, S.B. Duan, Q. Sun, S.Y. Wei, Z. Shi, H.Z. Zhang, and Y.H. Xing: Photocatalytic application of 4f-5f inorganic-organic frameworks: Influence of Lanthanide contraction on the structure and functional properties of a series of uranyl-lanthanide complexes. Chempluschem 79(9), 1304 (2014).

    Article  CAS  Google Scholar 

  24. G.C. Allen, P.A. Tempest, and J.W. Tyler: Coordination model for the defect structure of hyperstoichiometric UO2+x and U4O9. Nature 295, 48 (1982).

    Article  CAS  Google Scholar 

  25. L. Desgranges, Y. Pontillon, P. Matheron, M. Marcet, P. Simon, G. Guimbretiere, and F. Porcher: Miscibility gap in the U-Nd-O phase diagram: A new approach of nuclear oxides in the environment?Inorg. Chem. 51(17), 9147 (2012).

    Article  CAS  Google Scholar 

  26. S-M. Lee, T.W. Knigt, S.L. Voit, and R.I. Barabash: The lattice parameter behavior with different Nd and O Concentration in the (U1-yNdy)O2±x solid solution. Nucl. Technol. (2015, in press).

  27. A. Albinati, M.J. Cooper, K.D. Rouse, M.W. Thomas, and B.T.M. Willis: Temperature dependence of the atomic thermal displacements in UO2: A test case for the rietveld profile-refinement procedure. Acta Crystallogr. A A36, 265 (1980).

    Article  CAS  Google Scholar 

  28. E.J. Mittemeijer and U. Welzel: The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Z. Kristallogr. 223, 552 (2008).

    Article  CAS  Google Scholar 

  29. S. Brandstetter, P.M. Derlet, S. Van Petegem, and H. Van Swygenhoven: Williamson–Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations. Acta Mater. 56, 165 (2008).

    Article  CAS  Google Scholar 

  30. M.T. Hutchings: High-temperature studies of UO2 and ThO2 using neutron scattering techniques. J. Chem. Soc. Faraday Trans. 83, 1083 (1987).

    Article  CAS  Google Scholar 

  31. V.F. Hund and U. Peetz: Untersuchungen der Systeme La2O3, Nd2O3, Sm2O3, Yb2O3, Sc2O3 rnit UsO8. Zeitschrift für Anorgariischc Urtd Allgrmeine Chemie 271, 6 (1952).

    Article  CAS  Google Scholar 

  32. M.A. Krivoglaz: Diffuse Scattering of X-rays and Neutrons by Fluctuations (Springer, New York, USA, 1996); pp. 284.

    Book  Google Scholar 

  33. P.H. Dederichs: The theory of diffuse x ray scattering and its application to the study of point defects and their clusters. J. Phys. F: Metal Phys. 3, 471 (1973).

    Article  CAS  Google Scholar 

  34. R.I. Barabash, G.E. Ice, E.A. Karapetrova, and P. Zschack: Stress annealing induced diffuse scattering from Ni3 (Al, Si) precipitates. Metall. Mater. Trans. A. 43(5), 1413 (2011).

    Article  CAS  Google Scholar 

  35. R.I. Barabash, J.S. Chung, and M.F. Thorpe: Lattice and continuum theories of Huang scattering. J. Phys.: Condens. Matter 11, 3075 (1999).

    CAS  Google Scholar 

  36. R.E. Stoller, F.J. Walker, E.D. Specht, D.M. Nicholson, R.I. Barabash, P. Zschack, and G.E. Ice: Diffuse X-ray scattering measurements of point defects and clusters in iron. J. Nucl. Mater. 367–370, 269 (2007).

    Article  CAS  Google Scholar 

  37. R.I. Barabash and M.A. Krivoglaz: Influence of anisotropy on X-ray scattering by highly distorted ageing solid solutions. Phys. Met. Metall. 51(5), 1 (1981).

    Google Scholar 

  38. R.I. Barabash and M.A. Krivoglaz: X-ray scattering by polycrystals containing defects with Coulomb displacement fields. Phys. Met. Metall. 45(1), 1 (1979).

    Google Scholar 

  39. G.E. Ice, R.I. Barabash, and W-J. Liu: Diffuse X-ray scattering from tiny sample volumes. Z. Kristallogr. 220(12), 1076 (2005).

    CAS  Google Scholar 

  40. International Center for Diffraction Data (ICDD)Pair Distribution Functions (PDF)4 + hsrdb. (2012).

  41. J.P. Stark: Thermodynamic stability of vacancy concentrations during thermal diffusion experiments. Scr. Metall. Mater. 6, 91 (1972).

    Article  CAS  Google Scholar 

  42. M.A. Krivoglaz: X-ray and Neutron Diffraction in Nonideal Crystals (Springer, New York, USA, 1996); pp. 465.

    Book  Google Scholar 

  43. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in Halides and Chalcogenides. Acta Crystallogr. Sec. A 32, 751 (1976).

    Article  Google Scholar 

  44. Y. Yun and W.W. Kim: First principle studies on electronic and defect structures of UO2, ThO2, and PuO2. In Transactions of Korean Nuclear Society Spring Meeting, Jeju, Korea, (2007).

  45. A. Schwartz, M. Dressel, B. Alavi, A. Blank, S. Dubois, G. Grüner, B. Gorshunov, A. Volkov, G. Kozlov, S. Thieme, L. Degiorgi, and F. Lévy: Fluctuation effects on the electrodynamics of quasi-one-dimensional conductors above the charge-density-wave transition. Phys. Rev. B 52(8), 5643 (1995).

    Article  CAS  Google Scholar 

  46. M. Rice and E. Mele: Possibility of solitons with charge ±e/2 in highly correlated 1:2 salts of tetracyanoquinodimethane (TCNQ). Phys. Rev. B 25(2), 1339 (1982).

    Article  CAS  Google Scholar 

  47. J. Pang, W. Buyers, A. Chernatynskiy, M. Lumsden, B. Larson, and S. Phillpot: Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory. Phys. Rev. Lett. 110, 15 (2013).

    Article  CAS  Google Scholar 

  48. K. Park and D.R. Olander: A defect model for the oxygen potential of urania. High Temp. Sci. 29, 203 (1990).

    CAS  Google Scholar 

  49. B.T.M. Willis: The defect structure of hyper-stoichiometric uranium dioxide. Acta Crystallogr. A 34, 88 (1978).

    Article  Google Scholar 

  50. H.Y. Geng, Y. Chen, Y. Kaneta, M. Iwasawa, T. Ohnuma, and M. Kinoshita: Point defects and clustering in uranium dioxide by LSDA+U calculations. arXiv:0806.1790v1 [cond-mat.mtr]-sci]Rev. B 77, 104120 (2008).

    Article  CAS  Google Scholar 

  51. P. Chakraborty, M.R. Tonks, and G. Pastore: Modeling the influence of bubble pressure on grain boundary separation and fission gas release. J. Nucl. Mater. 452(1–3), 95 (2014).

    Article  CAS  Google Scholar 

  52. T. Chen, D. Chen, B.H. Sencer, and L. Shao: Molecular dynamics simulations of grain boundary thermal resistance in UO2. J. Nucl. Mater. 452(1–3), 364 (2014).

    Article  CAS  Google Scholar 

  53. J. Rest and S.M. Gehl: The mechanistic prediction of transient fission-gas release from LWR fuel. Nucl. Eng. Des. 56(1), 233 (1980).

    Article  CAS  Google Scholar 

  54. R.J. White and M.O. Tucker: A new fission-gas release model. J. Nucl. Mater. 118(1), 1 (1983).

    Article  CAS  Google Scholar 

  55. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  56. M. Pirzada, R.W. Grimes, L. Minervini, J.F. Maguire, and K.E. Sickafus: Oxygen migration in A2B2O7 pyrochlores. Solid State Ionics 140, 201 (2001).

    Article  CAS  Google Scholar 

  57. B.E. Hanken, C.R. Stanek, N. Gronbech-Jensen, and M. Asta: Computational study of the energetics of charge and cation mixing in U(1-x)Ce(x)O2. Phys. Rev. B 84, 085131 (2011).

    Article  CAS  Google Scholar 

  58. D.S. Aidhy, B. Liu, Y. Zhang, and W.J. Weber: Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations. Comput. Mater. Sci. 99, 298 (2015).

    Article  CAS  Google Scholar 

  59. D.A. Andersson, G. Baldinozzi, L. Desgranges, D.R. Conradson, and S.D. Conradson: Density functional theory calculations of UO2 oxidation: Evolution of UO2+x U4O9-y, U3O7 and U3O8. Inorg. Chem. 52, 2769 (2013).

    Article  CAS  Google Scholar 

  60. Th. Proffen and S.J.L. Billinge: PDFFIT, a program for full profile structural refinement of the atomic pair distribution function. J Appl Cryst. 32, 572 (1999).

    Article  CAS  Google Scholar 

  61. J. Perdew and Y. Wang: Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B. Condens. Matter. 46(20), 12947 (1992).

    Article  CAS  Google Scholar 

  62. Th. Proffen, S.J.L. Billinge, T. Egami, and D. Louca: Structural analysis of complex materials using the atomic pair distribution function — A practical guide. Z. Kristallogr. 218, 132 (2003).

    CAS  Google Scholar 

  63. D.M.C. Nicholson, R.I. Barabash, G.E. Ice, C.J. Sparks, J. Lee Robertson, and C. Wolverton: Relationship between pair and higher-order correlations in solid solutions and other Ising systems. J. Phys.: Condens. Matter 18(50), 11585 (2006).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Research is sponsored by the Department of Energy Office of Nuclear Energy, Fuel Cycle Research and Development Program. The calculations (DSA) were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The National Synchrotron Light Source at Brookhaven National Laboratory is supported under U.S.D.O.E. Grant No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rozaliya I. Barabash or David J. Sprouster.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barabash, R.I., Voit, S.L., Aidhy, D.S. et al. Cation and vacancy disorder in U1−yNdyO2.00−x alloys. Journal of Materials Research 30, 3026–3040 (2015). https://doi.org/10.1557/jmr.2015.261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.261

Navigation