Abstract
The nonisothermal crystallization kinetics, fragility, and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass (HE-BMG) have been investigated by differential scanning calorimetry. The activation energies for the glass transition and crystallization events were determined by Kissinger and Ozawa methods. The value of local Avrami exponent is less than 1.5 in most cases for all the three crystallization events, indicating that the major crystallization mechanism is diffusion-controlled growth of pre-existing nuclei. The local activation energy is stable during the whole crystallization process and this further confirms that the crystallization occurs through a single mechanism. Ti20Zr20Cu20Ni20Be20 alloy can be classified into “strong glass formers” according to the estimated fragility index and also shows a relatively low value of Gibbs free energy difference. However, compared with Zr41.2Ti13.8Cu12.5Ni10Be22.5 BMG, the glass-forming ability of Ti20Zr20Cu20Ni20Be20 HE-BMG is much lower and the related reasons have been discussed.
Similar content being viewed by others
References
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).
Y. Zhang, X. Yang, and P.K. Liaw: Alloy design and properties optimization of high-entropy alloys. JOM 64, 7 (2012).
W.H. Wang, C. Dong, and C.H. Shek: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004).
A. Inoue and A. Takeuchi: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).
S. Guo, C. Ng, J. Lu, and C.T. Liu: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).
K. Zhao, X.X. Xia, H.Y. Bai, D.Q. Zhao, and W.H. Wang: Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature. Appl. Phys. Lett. 98, 141913 (2011).
W.H. Wang: High-entropy metallic glasses. JOM 66, 2067 (2014).
L. Ma, L. Wang, T. Zhang, and A. Inoue: Bulk glass formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) alloys. Mater. Trans. 43, 277 (2002).
X.Q. Gao, K. Zhao, H.B. Ke, D.W. Ding, W.H. Wang, and H.Y. Bai: High mixing entropy bulk metallic glasses. J. Non-Cryst. Solids 357, 3557 (2011).
A. Takeuchi, N. Chen, T. Wada, Y. Yokoyama, H. Kato, A. Inoue, and J.W. Yeh: Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics 19, 1546 (2011).
H.Y. Ding and K.F. Yao: High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass. J. Non-Cryst. Solids 364, 9 (2013).
A. Peker and W.L. Johnson: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).
C.C. Hays, C.P. Kim, and W.L. Johnson: Large supercooled liquid region and phase separation in the Zr-Ti-Ni-Cu-Be bulk metallic glasses. Appl. Phys. Lett. 75, 1089 (1999).
Y.C. Kim, W.T. Kim, and D.H. Kim: A development of Ti-based bulk metallic glass. Mater. Sci. Eng., A 375–377, 127 (2004).
S. Cheng, C. Wang, M. Ma, D. Shan, and B. Guo: Non-isothermal crystallization kinetics of Zr41.2Ti13.8Cu12.5Ni10Be22.5 amorphous alloy. Thermochim. Acta 587, 11 (2014).
P. Gong, S.F. Zhao, X. Wang, and K.F. Yao: Non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 bulk metallic glass investigated by differential scanning calotimetry. Appl. Phys. A 120, 145 (2015).
K.K. Song, P. Gargarella, S. Pauly, G.Z. Ma, U. Kuhn, and J. Eckert: Correlation between glass-forming ability, thermal stability, and crystallization kinetics of Cu-Zr-Ag metallic glasses. J. Appl. Phys. 112, 063503 (2012).
K.G. Raval, K.N. Lad, A. Pratap, A.M. Awasthi, and S. Bhardwaj: Crystallization kinetics of a multicomponent Fe-based amorphous alloy using modulated differential scanning calorimetry. Thermochim. Acta 425, 47 (2005).
Y.D. Sun, P. Shen, Z.Q. Li, J.S. Liu, M.Q. Cong, and M. Jiang: Kinetics of crystallization process of Mg-Cu-Gd based bulk metallic glasses. J. Non-Cryst. Solids 358, 1120 (2012).
F.X. Qin, H.F. Zhang, B.Z. Ding, and Z.Q. Hu: Nanocrystallization kinetics of Ni-based bulk amorphous alloy. Intermetallics 12, 1197 (2004).
L. Hu and F. Ye: Crystallization kinetics of Ca65Mg15Zn20 bulk metallic glass. J. Alloys Compd. 557, 160 (2013).
S.F. Chen, C.Y. Chen, and C.H. Lin: Insight on the glass-forming ability of Al-Y-Ni-Ce bulk metallic glass. J. Alloys Compd. 637, 418 (2015).
J.C. Qiao, J.M. Pelletier, Q. Wang, W. Jiao, and W.H. Wang: On calorimetric study of the fragility in bulk metallic glasses with low glass transition temperature: (Ce0.72Cu0.28)90−xAl10Fex (x=0, 5 or 10) and Zn38Mg12Ca32Yb18. Intermetallics 19, 1367 (2011).
Y.C. Kim, J.M. Park, J.K. Lee, D.H. Bae, W.T. Kim, and D.H. Kim: Amorphous and icosahedral phases in Ti-Zr-Cu-Ni-be alloys. Mater. Sci. Eng., A 375–377, 749 (2004).
S.B. Qiu, K.F. Yao, and P. Gong: Effects of crystallization fractions on mechanical properties of Zr-based metallic glass matrix composites. Sci. China: Phys., Mech. Astron. 53, 424 (2010).
K.B. Kim, Y. Zhang, P.J. Warren, and B. Cantor: Crystallization behavior in a new multicomponent Ti16.6Zr16.6Hf16.6Ni20Cu20Al10 metallic glass developed by the equiatomic substitution technique. Philos. Mag. 83, 2371 (2003).
W. Zhou, J. Hou, Z. Zhong, and J. Li: Effect of Ag content on thermal stability and crystallization behavior of Zr-Cu-Ni-Al-Ag bulk metallic glass. J. Non-Cryst. Solids 411, 132 (2015).
H.E. Kissinger: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957).
T. Ozawa: Kinetic analysis of derivative curves in thermal analysis. J. Therm. Anal. Calorim. 2, 301 (1970).
N. Chen, Y. Li, and K.F. Yao: Thermal stability and fragility of Pd-Si binary bulk metallic glasses. J. Alloys Compd. 504, S211 (2010).
J. Málek: The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim. Acta 267, 61 (1995).
J.S. Blázquez, C.F. Conde, and A. Conde: Non-isothermal approach to isokinetic crystallization processes: Application to the nanocrystallization of HITPERM alloys. Acta Mater. 53, 2305 (2005).
S. Ranganathan and M. Von Heimendahl: The three activation energies with isothermal transformations: Applications to metallic glasses. J. Mater. Sci. 16, 2401 (1981).
A.T. Patel and A. Pratap: Kinetics of crystallization of Zr52Cu18Ni14Al10Ti6 metallic glass. J. Therm. Anal. Calorim. 107, 159 (2012).
C.A. Angell: Formation of glasses from liquids and biopolymers. Science 267, 1924 (1995).
R. Brüning and K. Samwer: Glass transition on long time scales. Phys. Rev. B 46, 11318 (1992).
O.N. Senkov: Correlation between fragility and glass-forming ability of metallic alloys. Phys. Rev. B 76, 104202 (2007).
E.S. Park, J.H. Na, and D.H. Kim: Correlation between fragility and glass-forming ability/plasticity in metallic glass-forming alloy. Appl. Phys. Lett. 91, 031907 (2007).
C. Chattopadhyay, S. Sangal, and K. Mondal: Relook on fitting of viscosity with undercooling of glassy liquids. Bull. Mater. Sci. 37, 83 (2014).
R. Busch, Y.J. Kim, and W.L. Johnson: Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy. J. Appl. Phys. 77, 4039 (1995).
K.N. Lad, K.G. Raval, and A. Pratap: Estimation of Gibbs free energy difference in bulk metallic glass forming alloys. J. Non-Cryst. Solids 334–335, 259 (2004).
G. Adam and J.H. Gibbs: On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965).
ACKNOWLEDGMENT
This work was supported by the National Natural Science Foundation of China (Grant Nos. 51271095 and 51101090).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Gong, P., Zhao, S., Ding, H. et al. Nonisothermal crystallization kinetics, fragility and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass. Journal of Materials Research 30, 2772–2782 (2015). https://doi.org/10.1557/jmr.2015.253
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2015.253