Skip to main content
Log in

Nonisothermal crystallization kinetics, fragility and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The nonisothermal crystallization kinetics, fragility, and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass (HE-BMG) have been investigated by differential scanning calorimetry. The activation energies for the glass transition and crystallization events were determined by Kissinger and Ozawa methods. The value of local Avrami exponent is less than 1.5 in most cases for all the three crystallization events, indicating that the major crystallization mechanism is diffusion-controlled growth of pre-existing nuclei. The local activation energy is stable during the whole crystallization process and this further confirms that the crystallization occurs through a single mechanism. Ti20Zr20Cu20Ni20Be20 alloy can be classified into “strong glass formers” according to the estimated fragility index and also shows a relatively low value of Gibbs free energy difference. However, compared with Zr41.2Ti13.8Cu12.5Ni10Be22.5 BMG, the glass-forming ability of Ti20Zr20Cu20Ni20Be20 HE-BMG is much lower and the related reasons have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  2. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).

    Article  CAS  Google Scholar 

  3. Y. Zhang, X. Yang, and P.K. Liaw: Alloy design and properties optimization of high-entropy alloys. JOM 64, 7 (2012).

    Google Scholar 

  4. W.H. Wang, C. Dong, and C.H. Shek: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004).

    Article  CAS  Google Scholar 

  5. A. Inoue and A. Takeuchi: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).

    Article  CAS  Google Scholar 

  6. S. Guo, C. Ng, J. Lu, and C.T. Liu: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).

    Article  CAS  Google Scholar 

  7. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534 (2008).

    Article  CAS  Google Scholar 

  8. K. Zhao, X.X. Xia, H.Y. Bai, D.Q. Zhao, and W.H. Wang: Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature. Appl. Phys. Lett. 98, 141913 (2011).

    Article  CAS  Google Scholar 

  9. W.H. Wang: High-entropy metallic glasses. JOM 66, 2067 (2014).

    Article  CAS  Google Scholar 

  10. L. Ma, L. Wang, T. Zhang, and A. Inoue: Bulk glass formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) alloys. Mater. Trans. 43, 277 (2002).

    Article  CAS  Google Scholar 

  11. X.Q. Gao, K. Zhao, H.B. Ke, D.W. Ding, W.H. Wang, and H.Y. Bai: High mixing entropy bulk metallic glasses. J. Non-Cryst. Solids 357, 3557 (2011).

    Article  CAS  Google Scholar 

  12. A. Takeuchi, N. Chen, T. Wada, Y. Yokoyama, H. Kato, A. Inoue, and J.W. Yeh: Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics 19, 1546 (2011).

    Article  CAS  Google Scholar 

  13. H.Y. Ding and K.F. Yao: High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass. J. Non-Cryst. Solids 364, 9 (2013).

    Article  CAS  Google Scholar 

  14. A. Peker and W.L. Johnson: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).

    Article  Google Scholar 

  15. C.C. Hays, C.P. Kim, and W.L. Johnson: Large supercooled liquid region and phase separation in the Zr-Ti-Ni-Cu-Be bulk metallic glasses. Appl. Phys. Lett. 75, 1089 (1999).

    Article  CAS  Google Scholar 

  16. Y.C. Kim, W.T. Kim, and D.H. Kim: A development of Ti-based bulk metallic glass. Mater. Sci. Eng., A 375–377, 127 (2004).

    Article  CAS  Google Scholar 

  17. S. Cheng, C. Wang, M. Ma, D. Shan, and B. Guo: Non-isothermal crystallization kinetics of Zr41.2Ti13.8Cu12.5Ni10Be22.5 amorphous alloy. Thermochim. Acta 587, 11 (2014).

    Article  CAS  Google Scholar 

  18. P. Gong, S.F. Zhao, X. Wang, and K.F. Yao: Non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 bulk metallic glass investigated by differential scanning calotimetry. Appl. Phys. A 120, 145 (2015).

    Article  CAS  Google Scholar 

  19. K.K. Song, P. Gargarella, S. Pauly, G.Z. Ma, U. Kuhn, and J. Eckert: Correlation between glass-forming ability, thermal stability, and crystallization kinetics of Cu-Zr-Ag metallic glasses. J. Appl. Phys. 112, 063503 (2012).

    Article  CAS  Google Scholar 

  20. K.G. Raval, K.N. Lad, A. Pratap, A.M. Awasthi, and S. Bhardwaj: Crystallization kinetics of a multicomponent Fe-based amorphous alloy using modulated differential scanning calorimetry. Thermochim. Acta 425, 47 (2005).

    Article  CAS  Google Scholar 

  21. Y.D. Sun, P. Shen, Z.Q. Li, J.S. Liu, M.Q. Cong, and M. Jiang: Kinetics of crystallization process of Mg-Cu-Gd based bulk metallic glasses. J. Non-Cryst. Solids 358, 1120 (2012).

    Article  CAS  Google Scholar 

  22. F.X. Qin, H.F. Zhang, B.Z. Ding, and Z.Q. Hu: Nanocrystallization kinetics of Ni-based bulk amorphous alloy. Intermetallics 12, 1197 (2004).

    Article  CAS  Google Scholar 

  23. L. Hu and F. Ye: Crystallization kinetics of Ca65Mg15Zn20 bulk metallic glass. J. Alloys Compd. 557, 160 (2013).

    Article  CAS  Google Scholar 

  24. S.F. Chen, C.Y. Chen, and C.H. Lin: Insight on the glass-forming ability of Al-Y-Ni-Ce bulk metallic glass. J. Alloys Compd. 637, 418 (2015).

    Article  CAS  Google Scholar 

  25. J.C. Qiao, J.M. Pelletier, Q. Wang, W. Jiao, and W.H. Wang: On calorimetric study of the fragility in bulk metallic glasses with low glass transition temperature: (Ce0.72Cu0.28)90−xAl10Fex (x=0, 5 or 10) and Zn38Mg12Ca32Yb18. Intermetallics 19, 1367 (2011).

    Article  CAS  Google Scholar 

  26. Y.C. Kim, J.M. Park, J.K. Lee, D.H. Bae, W.T. Kim, and D.H. Kim: Amorphous and icosahedral phases in Ti-Zr-Cu-Ni-be alloys. Mater. Sci. Eng., A 375–377, 749 (2004).

    Article  CAS  Google Scholar 

  27. S.B. Qiu, K.F. Yao, and P. Gong: Effects of crystallization fractions on mechanical properties of Zr-based metallic glass matrix composites. Sci. China: Phys., Mech. Astron. 53, 424 (2010).

    Article  CAS  Google Scholar 

  28. K.B. Kim, Y. Zhang, P.J. Warren, and B. Cantor: Crystallization behavior in a new multicomponent Ti16.6Zr16.6Hf16.6Ni20Cu20Al10 metallic glass developed by the equiatomic substitution technique. Philos. Mag. 83, 2371 (2003).

    Article  CAS  Google Scholar 

  29. W. Zhou, J. Hou, Z. Zhong, and J. Li: Effect of Ag content on thermal stability and crystallization behavior of Zr-Cu-Ni-Al-Ag bulk metallic glass. J. Non-Cryst. Solids 411, 132 (2015).

    Article  CAS  Google Scholar 

  30. H.E. Kissinger: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957).

    Article  CAS  Google Scholar 

  31. T. Ozawa: Kinetic analysis of derivative curves in thermal analysis. J. Therm. Anal. Calorim. 2, 301 (1970).

    Article  CAS  Google Scholar 

  32. N. Chen, Y. Li, and K.F. Yao: Thermal stability and fragility of Pd-Si binary bulk metallic glasses. J. Alloys Compd. 504, S211 (2010).

    Article  Google Scholar 

  33. J. Málek: The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim. Acta 267, 61 (1995).

    Article  Google Scholar 

  34. J.S. Blázquez, C.F. Conde, and A. Conde: Non-isothermal approach to isokinetic crystallization processes: Application to the nanocrystallization of HITPERM alloys. Acta Mater. 53, 2305 (2005).

    Article  CAS  Google Scholar 

  35. S. Ranganathan and M. Von Heimendahl: The three activation energies with isothermal transformations: Applications to metallic glasses. J. Mater. Sci. 16, 2401 (1981).

    Article  CAS  Google Scholar 

  36. A.T. Patel and A. Pratap: Kinetics of crystallization of Zr52Cu18Ni14Al10Ti6 metallic glass. J. Therm. Anal. Calorim. 107, 159 (2012).

    Article  CAS  Google Scholar 

  37. C.A. Angell: Formation of glasses from liquids and biopolymers. Science 267, 1924 (1995).

    Article  CAS  Google Scholar 

  38. R. Brüning and K. Samwer: Glass transition on long time scales. Phys. Rev. B 46, 11318 (1992).

    Article  Google Scholar 

  39. O.N. Senkov: Correlation between fragility and glass-forming ability of metallic alloys. Phys. Rev. B 76, 104202 (2007).

    Article  CAS  Google Scholar 

  40. E.S. Park, J.H. Na, and D.H. Kim: Correlation between fragility and glass-forming ability/plasticity in metallic glass-forming alloy. Appl. Phys. Lett. 91, 031907 (2007).

    Article  CAS  Google Scholar 

  41. C. Chattopadhyay, S. Sangal, and K. Mondal: Relook on fitting of viscosity with undercooling of glassy liquids. Bull. Mater. Sci. 37, 83 (2014).

    Article  CAS  Google Scholar 

  42. R. Busch, Y.J. Kim, and W.L. Johnson: Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy. J. Appl. Phys. 77, 4039 (1995).

    Article  CAS  Google Scholar 

  43. K.N. Lad, K.G. Raval, and A. Pratap: Estimation of Gibbs free energy difference in bulk metallic glass forming alloys. J. Non-Cryst. Solids 334–335, 259 (2004).

    Article  CAS  Google Scholar 

  44. G. Adam and J.H. Gibbs: On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51271095 and 51101090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pan Gong or Kefu Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, P., Zhao, S., Ding, H. et al. Nonisothermal crystallization kinetics, fragility and thermodynamics of Ti20Zr20Cu20Ni20Be20 high entropy bulk metallic glass. Journal of Materials Research 30, 2772–2782 (2015). https://doi.org/10.1557/jmr.2015.253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.253

Navigation