Skip to main content
Log in

Self-sustained cyclic tin induced crystallization of amorphous silicon

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Experimental evidences for a recently proposed mechanism of tin-induced crystallization of amorphous silicon are presented. The mechanism discusses a crystalline phase growth through cyclic processes of formation and decay of a super-saturated solution of silicon in molten tin at the interface with the amorphous silicon. The suggested mechanism is validated using a nonlinear dynamical model that takes into account the mass diffusion of the components of the system, heat transfer caused by latent (crystallization) heat release and amorphous silicon dissolution events, and concentration nonuniformities created by silicon crystallization. The analysis of a stationary-state solution of the model confirms the existence of periodic solutions for the partial volume of the crystalline phase and other system’s variables. Possible applications of the proposed mechanism in manufacturing of cost-effective nanocrystalline silicon films for the third-generation solar cell technology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. M.C. Beard, J.M. Luther, and A.J. Nozik: The promise and challenge of nanostructured solar cells. Nat. Nanotechnol. 9, 951 (2014).

    Article  CAS  Google Scholar 

  2. D.L. Staebler and C.R. Wronski: Reversible conductivity changes in discharge-produced amorphous Si. Appl. Phys. Lett. 31, 292 (1977).

    Article  CAS  Google Scholar 

  3. Z.I. Alferov, V.M. Andreev, and V.D. Rumyantsev: Solar photovoltaics: Trends and prospects. Semiconductors 38(8), 899 (2004).

    Article  CAS  Google Scholar 

  4. B. Yan, G. Yue, X. Xu, J. Yang, and S. Guha: High efficiency amorphous and nanocrystalline silicon solar cells. Phys. Status Solidi A 207(3), 671 (2010).

    Article  CAS  Google Scholar 

  5. N.S. Lewis: Toward cost-effective solar energy use. Science 315, 798 (2007).

    Article  CAS  Google Scholar 

  6. R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, and F.C. Krebs: Roll-to-roll fabrication of polymer solar cells. Mater. Today 15(1–2), 36 (2012).

    Article  CAS  Google Scholar 

  7. M. Birkholz, B. Selle, E. Conrad, K. Lips, and W. Fuhs: Evolution of structure in thin microcrystalline silicon films grown by electron-cyclotron resonance chemical vapor deposition. J. Appl. Phys. 88(7), 4376 (2000).

    Article  CAS  Google Scholar 

  8. B. Rech, T. Roschek, J. Müller, S. Wieder, and H. Wagner: Amorphous and microcrystalline silicon solar cells prepared at high deposition rates using RF (13.56 MHz) plasma excitation frequencies. Sol. Energy Mater. Sol. Cells 66(1–4), 267 (2001).

    Article  CAS  Google Scholar 

  9. M.K. van Veen, C.H.M. van der Werf, and R.E.I. Schropp: Tandem solar cells deposited using hot-wire chemical vapor deposition. J. Non-Cryst. Solids 338, 655 (2004).

    Article  CAS  Google Scholar 

  10. Y. Mai, S. Klein, R. Carius, H. Stiebig, L. Houben, X. Geng, and F. Finger: Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers. J. Non-Cryst. Solids 352(9–20), 1859 (2006).

    Article  CAS  Google Scholar 

  11. H. Li, R.H. Franken, R.L. Stolk, C.H.M. van der Werf, J.K. Rath, and R.E.I. Schropp: Controlling the quality of nanocrystalline silicon made by hot-wire chemical vapor deposition by using a reverse H2 profiling technique. J. Non-Cryst. Solids 354(19–25), 2087 (2008).

    Article  CAS  Google Scholar 

  12. R. Amrani, F. Pichot, J. Podlecky, A. Foucaran, L. Chahed, and Y. Cuminal: Optical and structural proprieties of nc-Si:H prepared by argon diluted silane PECVD. J. Non-Cryst. Solids 358(17), 1978 (2012).

    Article  CAS  Google Scholar 

  13. G. Fugallo and A. Mattoni: Thermally induced recrystallization of textured hydrogenated nanocrystalline silicon. Phys. Rev. B 89, 045301 (2014).

    Article  CAS  Google Scholar 

  14. J-S. Ro: Crystallization of amorphous silicon films using Joule heating. J. Korean Inst. Surf. Eng. 47(1), 20 (2014).

    Article  Google Scholar 

  15. O. Nast and S.R. Wenham: Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization. J. Appl. Phys. 88(1), 124 (2000).

    Article  CAS  Google Scholar 

  16. A. Mohiddon and G. Krishna: Metal induced crystallization. In Crystallization — Science and Technology, A. Marcello ed. (InTech, Rijeka, Croatia, 2012); p. 461.

    Google Scholar 

  17. D. van Gestel, I. Gordon, and J. Poortmans: Aluminum-induced crystallization for thin-film polycrystalline silicon solar cells: Achievements and perspective. Sol. Energy Mater. Sol. Cells 119, 261 (2013).

    Article  CAS  Google Scholar 

  18. V.B. Neimash, A. Kraitchinskii, M. Kras’ko, O. Puzenko, C. Claeys, E. Simoen, B. Svensson, and A. Kuznetsov: Influence of tin impurities on the generation and annealing of thermal oxygen donors in Czochralski silicon at 450 °C. J. Electrochem. Soc. 147, 2727 (2000).

    Article  CAS  Google Scholar 

  19. C. Claeys, E. Simoen, V.B. Neimash, A. Kraitchinskii, M. Kras’ko, O. Puzenko, A. Blondeel, and P. Clauws: Tin doping of silicon for controlling oxygen precipitation and radiation hardness. J. Electrochem. Soc. 148, G738 (2001).

    Article  CAS  Google Scholar 

  20. R.W. Olesinski and G.J. Abbaschian: The Si–Sn (silicon–tin) system. Bull. Alloy Phase Diagrams 5(3), 273 (1984).

    Article  CAS  Google Scholar 

  21. M.A. Mohiddon and M.G. Krishna: Growth and optical properties of Sn–Si nanocomposite thin films. J. Mater. Sci. 47, 6972 (2012).

    Article  CAS  Google Scholar 

  22. M. Jeon, C. Jeong, and K. Kamisako: Tin induced crystallization of hydrogenated amorphous silicon thin films. Mater. Sci. Technol. 26, 875 (2010).

    Article  CAS  Google Scholar 

  23. R.P. Thornton, R.G. Elliman, and J.S. Williams: Amorphous-to-polycrystalline phase transformations in Sn-implanted silicon. J. Mater. Res. 5, 1003 (1990).

    Article  CAS  Google Scholar 

  24. F. Lin and M.K. Hatalis: Crystallization of tin-implanted amorphous silicon thin films. MRS Proc. 279, 553–558 (1993).

    Article  CAS  Google Scholar 

  25. G.N. Parsons, J.W. Cook, G. Lucovsky, S.Y. Lin, and M.J. Mantini: Deposition of a-Si,Sn:H alloy films by reactive magnetron sputtering from separate Si and Sn targets. J. Vac. Sci. Technol., A 4, 470 (1986).

    Article  CAS  Google Scholar 

  26. R. Ragan, K.S. Min, and H.A. Atwater: Direct energy gap group IV semiconductor alloys and quantum dot arrays in SnxGe1−x/Ge and SnxSi1−x/Si alloy systems. Mater. Sci. Eng., B 87, 204 (2001).

    Article  Google Scholar 

  27. V.V. Voitovych, V.B. Neimash, N.N. Krasko, A.G. Kolosiuk, V.Y. Povarchuk, R.M. Rudenko, V.A. Makara, R.V. Petrunya, V.O. Juhimchuk, and V.V. Strelchuk: The effect of Sn impurity on the optical and structural properties of thin silicon films. Semiconductors 45(10), 1281 (2011).

    Article  CAS  Google Scholar 

  28. V.B. Neimash, V.M. Poroshin, A.M. Kabaldin, V.O. Yukhymchuk, P.E. Shepelyavyi, V.A. Makara, and S.Y. Larkin: Microstructure of thin Si–Sn composite films. Ukr. J. Phys. 58(9), 865 (2013).

    Article  CAS  Google Scholar 

  29. V. Neimash, V. Poroshin, P. Shepeliavyi, V. Yukhymchuk, V. Melnyk, A. Kuzmich, V. Makara, and A.O. Goushcha: Tin induced a-Si crystallization in thin films of Si–Sn alloys. J. Appl. Phys. 114(21), 213104 (2013).

    Article  CAS  Google Scholar 

  30. H. Richter, Z.P. Wang, and L. Ley: The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39(5), 625 (1981).

    Article  CAS  Google Scholar 

  31. I.H. Campbell and P.M. Fauchet: The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58(10), 739 (1986).

    Article  CAS  Google Scholar 

  32. E. Bustarret, M.A. Hachicha, and M. Brunel: Experimental determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy. Appl. Phys. Lett. 52, 1675 (1988).

    Article  CAS  Google Scholar 

  33. M. Hort and T. Spohn: Crystallization calculations for a binary melt cooling at constant rates of heat removal — Implications for the crystallization of magma bodies. Earth Planet. Sci. Lett. 107(3–4), 463 (1991).

    Article  CAS  Google Scholar 

  34. R. Becker and W. Döring: Kinetic treatment of germ formation in supersaturated vapour. Ann. Phys. 24(8), 719 (1935).

    Article  CAS  Google Scholar 

  35. N.S. Tavare: Industrial Crystallization: Process Simulation Analysis and Design (Plenum Press, New York, 1995); p. 527.

    Book  Google Scholar 

  36. A. Sarikov, J. Schneider, M. Muske, S. Gall, and W. Fuhs: Theoretical study of the kinetics of grain nucleation in the aluminium-induced layer-exchange process. J. Non-Cryst. Solids 352(9–20), 980 (2006).

    Article  CAS  Google Scholar 

  37. M. Avrami: Kinetics of phase change. I. General theory. J. Chem. Phys. 7(12), 1103 (1939).

    Article  CAS  Google Scholar 

  38. E. Clouet: Modeling of nucleation processes. In ASM Handbook: Fundamentals of Modeling for Metals Processing, Vol. 22A, D.U. Furrer and S.L. Semiatin eds.; ASM International: Materials Park, OH, 2009; p. 203.

    Google Scholar 

  39. A. Hiraki: A model on the mechanism of room temperature interfacial intermixing reaction in various metal semiconductor couples: What triggers the reaction?J. Electrochem. Soc. 127, 2662 (1980).

    Article  CAS  Google Scholar 

  40. H. Chikita, R. Matsumura, Y. Kai, T. Sadoh, and M. Miyao: Ultra-high-speed lateral solid phase crystallization of GeSn on insulator combined with Sn-melting-induced seeding. Appl. Phys. Lett. 105, 202112 (2014).

    Article  CAS  Google Scholar 

  41. K. Toko, N. Oya, N. Saitoh, N. Yoshizawa, and T. Suemasu: 70 °C synthesis of high-Sn content (25%) GeSn on insulator by Sn-induced crystallization of amorphous Ge. Appl. Phys. Lett. 106, 082109 (2015).

    Article  CAS  Google Scholar 

  42. K. Toko, R. Numata, N. Saitoh, N. Yoshizawa, N. Usami, and T. Suemasu: Selective formation of large-grained, (100)- or (111)-oriented Si on glass by Al-induced layer exchange. J. Appl. Phys. 115, 094301 (2014).

    Article  CAS  Google Scholar 

  43. d.R. Numata, K. Toko, N. Saitoh, N. Yoshizawa, N. Usami, and T. Suemasu: Orientation control of large-grained Si films on insulators by thickness-modulated Al-induced crystallization. Cryst. Growth Des. 13, 1767 (2013).

    Article  CAS  Google Scholar 

  44. G. Nicolis and I. Prigogine: Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations (J. Wiley and Sons, New York; London; Sydney, 1977); p. 491.

    Google Scholar 

  45. H. Haken: Synergetics, an Introduction: Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry, and Biology, 3rd rev. ed. (Springer-Verlag, New York, 1983); p. 371.

    Book  Google Scholar 

  46. A. Toramaru: A numerical experiment of crystallization for a binary eutectic system with application to igneous textures. J. Geophys. Res.: Solid Earth 106(B3), 4037 (2001).

    Article  Google Scholar 

  47. A. Toramaru and M. Matsumoto: Numerical experiment of cyclic layering in a solidified binary eutectic melt. J. Geophys. Res.: Solid Earth 117, B02209 (2012).

    Google Scholar 

  48. H. D. Geiler, E. Glaser, G. Götz, and M. Wagner: Explosive crystallization in silicon. J. Appl. Phys. 59(9), 3091 (1986).

    Article  CAS  Google Scholar 

  49. D. Kurtze, W. van Saarloos, and J. Weeks: Front propagation in self-sustained and laser-driven explosive crystal-growth—Stability analysis and morphological aspects. Phys. Rev. B 30(3), 1398 (1984).

    Article  CAS  Google Scholar 

  50. W. van Saarloos and J.D. Weeks: Surface undulations in explosive crystallization—A nonlinear-analysis of a thermal-instability. Phys. D 12(1–3), 279 (1984).

    Article  Google Scholar 

  51. I. Smagin and A. Nepomnyashchy: Stability analysis of explosive crystallization front in the ESPE mode. Phys. D 238(6), 706 (2009).

    Article  CAS  Google Scholar 

  52. G.F. Wakefield and H.S.N. Setty: Tin-lead purification of silicon. Patent US3933981 A, 1976.

  53. I.E. Maronchuk, T.F. Kulyutkina, and I.I. Maronchuk: Method for purification of technical purity silicon. Patent UA84653 (Ukraine), 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Volodymyr B. Neimash or Alexander O. Goushcha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neimash, V.B., Goushcha, A.O., Shepeliavyi, P.Y. et al. Self-sustained cyclic tin induced crystallization of amorphous silicon. Journal of Materials Research 30, 3116–3124 (2015). https://doi.org/10.1557/jmr.2015.251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.251

Navigation