Skip to main content
Log in

Surface preparation effect on duplex stainless steel passive film electrical properties studied by in situ CSAFM

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of surface preparation—grinding, polishing, and electrochemical etching—on the duplex stainless steel passive film conductivity was investigated by in situ current sensing atomic force microscopy. The current maps show that the current in the passive film on three prepared surfaces is different, especially for the ferrite and austenite phase surface. The current on the austenite and ferrite is similar on either mechanical ground or polished surfaces, but the current on the austenite surface is much higher than current on the ferrite surface after electrochemical etching. The difference in the passive film conductivity originates from the changes in the chemical composition and thickness of the passive film and the change in topographical properties induced by the preparation procedures. This is confirmed by AFM, x-ray photoelectron spectroscopy, and auger electron spectroscopy measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. N.E. Hakiki, M.F. Montemor, M.G.S. Ferreira, and M. da Cunha Belo: Corros. Sci. 42, 687 (2000).

    Article  CAS  Google Scholar 

  2. S. Ningshen, U. Kamachi Mudali, V.K. Mittal, and H.S. Khatak: Corros. Sci. 49, 481 (2007).

    Article  CAS  Google Scholar 

  3. U. Stimming and J.W. Schultze: Electrochim. Acta 24, 859 (1979).

    Article  CAS  Google Scholar 

  4. N.E. Hakiki: Corros. Sci. 53, 2688 (2011).

    Article  CAS  Google Scholar 

  5. P.J. Antony, R.K. Singh Raman, R. Mohanram, and R. Raman: Corros. Sci. 50, 1858 (2008).

    Article  CAS  Google Scholar 

  6. J.S. Kim, E.A. Cho, and H.S. Kwon: Corros. Sci. 43, 1403 (2001).

    Article  CAS  Google Scholar 

  7. A.D. Paola, F.D. Quarto, and C. Sunseri: Corros. Sci. 133, 1326 (1986).

    Google Scholar 

  8. V. Vignal, H. Krawiec, O. Heintz, and D. Mainy: Corros. Sci. 67, 109 (2013).

    Article  CAS  Google Scholar 

  9. C.M. Rangel and T.M. Silva: Electrochim. Acta 50, 5076 (2005).

    Article  CAS  Google Scholar 

  10. J. Gluszek and K. Nitsch: Corros. Sci. 22, 1067 (1982).

    Article  CAS  Google Scholar 

  11. K. Azumi, T. Ohtsuka, and N. Sato: J. Electrochem. Soc. 133, 1326 (1986).

    Article  CAS  Google Scholar 

  12. N.E. Hakiki, S. Boudin, B. Rondot, and M. Da Cunha Belo: Corros. Sci. 37, 1809 (1995).

    Article  CAS  Google Scholar 

  13. P. Marcus, V. Maurice, and H.H. Strehblow: Corros. Sci. 50, 2698 (2008).

    Article  CAS  Google Scholar 

  14. J. Amri, T. Souier, B. Malki, and B. Baroux: Corros. Sci. 50, 431 (2008).

    Article  CAS  Google Scholar 

  15. I. Milosev and B. Kapun: Mater. Sci. Eng., C 32, 1087 (2012).

    Article  CAS  Google Scholar 

  16. W. Li and D.Y. Li: Acta Mater. 54, 445 (2006).

    Article  CAS  Google Scholar 

  17. W. Li and D.Y. Li: Appl. Surf. Sci. 240, 388 (2005).

    Article  CAS  Google Scholar 

  18. T. Souier, F. Martin, C. Bataillon, and J. Cousty: Appl. Surf. Sci. 256, 2434 (2010).

    Article  CAS  Google Scholar 

  19. T. Souier, and M. Chiesa: J. Mater. Res. 27, 1580 (2012).

    Article  CAS  Google Scholar 

  20. L.Q. Guo, M.C. Li, L.J. Qiao, and A.A. Volinsky: Corros. Sci. 78, 55 (2014).

    Article  CAS  Google Scholar 

  21. L.Q. Guo, M. Li, X.L. Shi, Y. Yan, X.Y. Li, and L.J. Qiao: Corros. Sci. 53, 3733 (2011).

    Article  CAS  Google Scholar 

  22. M. Li, L.Q. Guo, L.J. Qiao, and Y. Bai: Corros. Sci. 60, 76 (2012).

    Article  CAS  Google Scholar 

  23. L.Q. Guo, Y. Bai, B.Z. Xu, W. Pan, J.X. Li, and L.J. Qiao: Corros. Sci. 70, 140 (2013).

    Article  CAS  Google Scholar 

  24. L.Q. Guo, X.M. Zhao, M. Li, Y. Bai, and L.J. Qiao: Appl. Surf. Sci. 259, 213 (2012).

    Article  CAS  Google Scholar 

  25. L.Q. Guo, M.C. Li, L.J. Qiao, and A.A. Volinsky: Appl. Surf. Sci. 287, 499 (2013).

    Article  CAS  Google Scholar 

  26. K. Wang, N.R. Tao, G. Liu, J. Lu, and K. Lu: Acta Mater. 54, 5281 (2006).

    Article  CAS  Google Scholar 

  27. F.J. Meng, J.Q. Wang, E.H. Han, and W. Ke: Corros. Sci. 51, 2716 (2009).

    Article  Google Scholar 

  28. J.L. Lv and H.Y. Luo: Mater. Chem. Phys. 139, 674 (2013).

    Article  CAS  Google Scholar 

  29. V. Vignal, O. Delrue, O. Heintz, and J. Peultier: Electrochim. Acta 55, 7118 (2010).

    Article  CAS  Google Scholar 

  30. L.F. Garfias-Mesias, J.M. Skyes, and C.D.S. Tuck: Corros. Sci. 38, 1319 (1996).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge support from the National Natural Science Foundation of China under Grant Nos. 51271026 and 51431004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Q. Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L.Q., Yang, B.J., Liang, D. et al. Surface preparation effect on duplex stainless steel passive film electrical properties studied by in situ CSAFM. Journal of Materials Research 30, 3084–3092 (2015). https://doi.org/10.1557/jmr.2015.245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.245

Navigation