Skip to main content
Log in

Enhancement in physical properties of barium hexaferrite with substitution

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

M-type barium hexaferrite powders were synthesized using modified Pechini sol gel auto combustion method. The powder samples were heat treated at 900 °C for 5 h and were subjected to the structural, thermal, dielectric, magnetic, and optical studies. X-ray powder diffraction patterns show the formation of pure phase of M-type hexaferrite. Thermal analysis reveals that the weight loss of precursor becomes constant after 680 °C. The presence of two prominent peaks near 430 and 580 cm−1 in Fourier transform infrared spectroscopy spectra indicates the formation of M-type hexaferrites. The MH curve has been used to study the magnetic behavior. The maximum value of coercivity is found for x = 0.41, which is higher than that of the pure barium hexaferrite. The band gap dependency on composition was studied using UV–Vis NIR spectroscopy. It was found that the dielectric constant is high at low frequency and decreases with an increase in frequency. Hexagonal structure of hexaferrite is visualized in transmission electron images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. M. Radwan, M.M. Rashad, and M.M. Hessien: Synthesis and characterization of barium hexaferrite nanoparticles. J. Mater. Process. Technol. 181, 106 (2007).

    Article  CAS  Google Scholar 

  2. T. Gonzalez-Carreno, M.P. Morales, and C.J. Serna: Barium ferrite nanoparticles prepared directly by aerosol pyrolysis. Mater. Lett. 43, 97 (2000).

    Article  CAS  Google Scholar 

  3. M. Cernea, S.G. Sandu, C. Galassi, R. Radu, and V. Kuncser: Magnetic properties of BaxSr1−xFe12O19 (x = 0.05–0.35) ferrites prepared by different methods. J. Alloys Compd. 561, 121 (2013).

    Article  CAS  Google Scholar 

  4. P. Bhattacharya, S. Dhibar, G. Hatui, A. Mandal, T. Das, and C.K. Das: Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: A potential candidate for electromagnetic wave absorbing and energy storage device applications. RSC Adv. 4, 17039 (2014).

    Article  CAS  Google Scholar 

  5. C. Navau, J. Prat-Camps, O. Romero-Isart, J.I. Cirac, and A. Sanchez: Long-distance transfer and routing of static magnetic fields. Phys. Rev. Lett. 112, 253901 (2014).

    Article  CAS  Google Scholar 

  6. M.N. Ashiq, M.J. Iqbal, M. Najam-ul-Haq, P.H. Gomez, and A.M. Qureshi: Synthesis, magnetic and dielectric properties of Er–Ni doped Sr-hexaferrite nanomaterials for applications in high density recording media and microwave devices. J. Magn. Magn. Mater. 324, 15 (2012).

    Article  CAS  Google Scholar 

  7. H.A. Patel, J. Byun, and C.T. Yavuz: Arsenic removal by magnetic nano-crystalline barium hexaferrite. J. Nanopart. Res. 14, 881 (2012).

    Article  CAS  Google Scholar 

  8. V. Anbarasu, P.M. Md Gazzali, T. Karthik, A. Manigandan, and K. Sivakumar: Effect of divalent cation substitution in the magnetoplumbite structured BaFe12O19 system. J. Mater. Sci.: Mater. Electron. 24, 916 (2013).

    CAS  Google Scholar 

  9. Q. Jianxun, Z. Qiguo, G. Mingyuan, and H. Shen: Effect of aluminum substitution on microwave absorption properties of barium hexaferrite. J. Appl. Phys. 98, 103905 (2005).

    Article  CAS  Google Scholar 

  10. A. Thakur, R.R. Singh, and P.B. Barman: Synthesis and characterizations of Nd3+ doped SrFe12O19 nanoparticles. Mater. Chem. Phys. 141, 562 (2013).

    Article  CAS  Google Scholar 

  11. F.M.M. Pereira, C.A.R. Junior, M.R.P. Santos, R.S.T.M. Sohn, F.N.A. Freire, J.M. Sasaki, J.A.C. de Paiva, and A.S.B. Sombra: Structural and dielectric spectroscopy studies of the M-type barium strontium hexaferrite alloys (BaxSr1–xFe12O19). J. Mater. Sci.: Mater. Electron. 19, 627 (2008).

    CAS  Google Scholar 

  12. F. Khademi, A. Poorbafrani, P. Kameli, and H. Salamati: Structural, magnetic and microwave properties of Eu-doped barium hexaferrite powders. J. Supercond. Novel Magn. 25, 525 (2012).

    Article  CAS  Google Scholar 

  13. P. Winotai, S. Thongmee, and I.M. Tang: Cation distribution in bismuth-doped M-type barium hexaferrite. Mater. Res. Bull. 35, 1747 (2000).

    Article  CAS  Google Scholar 

  14. V.N. Dhage, M.L. Mane, A.P. Keche, C.T. Birajdar, and K.M. Jadhav: Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique. Phys. B 406, 789 (2011).

    Article  CAS  Google Scholar 

  15. I. Bsoul and S.H. Mahmood: Magnetic and structural properties of BaFe12−xGaxO19 nanoparticles. J. Alloys Compd. 489, 110 (2010).

    Article  CAS  Google Scholar 

  16. S. Ounnunkad: Improving magnetic properties of barium hexaferrites by La or Pr substitution. Solid State Commun. 138, 472 (2006).

    Article  CAS  Google Scholar 

  17. H. Xiaogu, Z. Jing, W. Hongzhou, Y. Shaoteng, W. Lixi, and Z. Qitu: Er3+-substituted W-type barium ferrite: Preparation and electromagnetic properties. J. Rare Earths 28, 940 (2010).

    Article  CAS  Google Scholar 

  18. H. Feng, L. Fernandez-Garcia, X.S. Liu, D-R. Zhu, M. Suárez, and J.L. Menendez: A strong magneto-optical activity in rare-earth La3+ substituted M-type strontium ferrites. J. Appl. Phys. 109, 113906 (2011).

    Article  CAS  Google Scholar 

  19. H. Sozeri, I. Kuucuk, and H. Ozkan: Improvement in magnetic properties of La substituted BaFe12O19 particles prepared with an unusually low Fe/Ba molar ratio. J. Magn. Magn. Mater. 323, 1799 (2011).

    Article  CAS  Google Scholar 

  20. I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, and M.A. Iqbal: Structural, electrical, and microstructure properties of nanostructured calcium doped Ba-hexaferrites synthesized by sol–gel method. J. Supercond. Novel Magn. 26, 3277 (2013).

    Article  CAS  Google Scholar 

  21. M.K. Tehrani, A. Ghasemi, M. Moradi, and R.S. Alam: Wideband electromagnetic wave absorber using doped barium hexaferrite in Ku-band. J. Alloys Compd. 509, 8398 (2011).

    Article  CAS  Google Scholar 

  22. M.L. Gregori, M.S. Pinho, R.C. Lima, J.C.S. Leandro, and T. Ogasawara: Effect of different dopants on the microwave properties of m-doped barium hexaferrites. Key Eng. Mater. 264–268, 1229 (2004).

    Article  Google Scholar 

  23. X. Liu, P. Hernández-Gómez, K. Huang, S. Zhou, Y. Wang, X. Cai, H. Sun, and B. Ma: Research on La3+–Co2+-substituted strontium ferrite magnets for high intrinsic coercive force. J. Magn. Magn. Mater. 305, 524 (2006).

    Article  CAS  Google Scholar 

  24. T. Kaur, B. Kaur, B.H. Bhat, S. Kumar, and A.K. Srivastava: Effect of calcination temperature on microstructure, dielectric, magnetic and optical properties of Ba0.7La0.3Fe11.7Co0.3O19 hexaferrite. Phys. B 456, 206 (2015).

    Article  CAS  Google Scholar 

  25. A.G. Belous, O.I. V’yunov, E.V. Pashkova, V.P. Ivanitskii, and O.N. Gavrilenko: Mossbauer study and magnetic properties of M-type barium hexaferrite doped with Co+ Ti and Bi + Ti ions. J. Phys. Chem. B 110, 26477 (2006).

    Article  CAS  Google Scholar 

  26. Y. Liu, M.G.B. Drew, Y. Liu, J. Wang, and M. Zhang: Preparation, characterization and magnetic properties of the doped barium hexaferrites BaFe12−2xCox/2Znx/2SnxO19, x=0.0–2.0. J. Magn. Magn. Mater. 322, 814 (2010).

    Article  CAS  Google Scholar 

  27. F. Leccabue, R. Panizzieri, S. Garcia, N. Suarez, J.L. Sanchez, O. Ares, and X.R. Hua: Magnetic and mössbauer study of rare-earth-substituted M-, W- and X-type hexagonal ferrites. J. Mater. Sci. 25, 2765 (1990).

    Article  CAS  Google Scholar 

  28. J.C. Corral-Huacuz and G. Mendoza-Suárez: Preparation and magnetic properties of Ir–Co and La–Zn substituted barium ferrite powders obtained by sol–gel. J. Magn. Magn. Mater. 242, 430 (2002).

    Article  Google Scholar 

  29. Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishitawa, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, and Y. Tokura: Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity. Phys. Rev. Lett. 105, 257201 (2010).

    Article  CAS  Google Scholar 

  30. A. Ghasemi: Remarkable influence of carbon nanotubes on microwave absorption characteristics of strontium ferrite/CNT nanocomposites. J. Magn. Magn. Mater. 323, 3133 (2011).

    Article  CAS  Google Scholar 

  31. V.V. Soman, V.M. Nanoti, and D.K. Kulkarni: Dielectric and magnetic properties of Mg–Ti substituted barium hexaferrite. Ceram. Int. 39, 5713 (2013).

    Article  CAS  Google Scholar 

  32. A. Ataie and A. Mali: Characteristics of barium hexaferrite nanocrystalline powders prepared by a sol–gel combustion method using inorganic agent. J. Electroceram. 21, 357 (2008).

    Article  CAS  Google Scholar 

  33. A.P. Safronov, O.M. Samatov, A.I. Medvedev, I.V. Beketov, and A.M. Murzakaev: Synthesis of strontium hexaferrite nanopowder by the laser evaporation method. Nanotechnol. Russ. 7, 486 (2012).

    Article  Google Scholar 

  34. X. Liu, J. Wang, L.M. Gan, S.C. Ng, and J. Ding: An ultrafine barium ferrite powder of high coercivity from water-in-oil microemulsion. J. Magn. Magn. Mater. 184, 344 (1998).

    Article  CAS  Google Scholar 

  35. M.C. Dimri, S.C. Kashyap, and D.C. Dube: Electrical and magnetic properties of barium hexaferrite nanoparticles prepared by citrate precursor method. Ceram. Int. 30, 1623 (2004).

    Article  CAS  Google Scholar 

  36. H. Li, J. Huang, Q. Li, and X. Su: Preparation of barium ferrite films with high Fe/Ba ratio by sol–gel method. J. Sol-Gel Sci. Technol. 52, 309 (2009).

    Article  CAS  Google Scholar 

  37. A. Gonzalez-Angeles, G. Mendoza-Suárez, A. Grusková, I. Tóth, V. Jančárik, M. Papánová, and J.I. Escalante-Garcı: Magnetic studies of NiSn-substituted barium hexaferrites processed by attrition milling. J. Magn. Magn. Mater. 270, 77 (2004).

    Article  CAS  Google Scholar 

  38. L. Qin and H. Verweij: Modified Pechini synthesis of hexaferrite Co2Z with high permeability. Mater. Lett. 68, 143 (2012).

    Article  CAS  Google Scholar 

  39. W.Y. Zhao, P. Wei, H.B. Cheng, X.F. Tang, and Q.J. Zhang: FTIR spectra, lattice shrinkage, and magnetic properties of CoTi-substituted M-type barium hexaferrite nanoparticles. J. Am. Ceram. Soc. 90, 2095 (2007).

    Article  CAS  Google Scholar 

  40. M.J. Iqbal and M.N. Ashiq: Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136, 383 (2008).

    Article  CAS  Google Scholar 

  41. I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, and M.A. Iqbal: Structural and magnetic properties of nano-structured Eu3+ substituted M-type hexaferrites synthesized by sol–gel auto-combustion technique. J. Supercond. Novel Magn. 26, 3315 (2013).

    Article  CAS  Google Scholar 

  42. A. Thakur, R.R. Singh, and P.B. Barman: Structural and magnetic properties of La3+ substituted strontium hexaferrite nanoparticles prepared by citrate precursor method. J. Magn. Magn. Mater. 326, 35 (2013).

    Article  CAS  Google Scholar 

  43. S. Ilican, M. Caglar, and Y. Caglar: Determination of the thickness and optical constants of transparent indium-doped ZnO thin films by the envelope method. Mater. Sci.-Pol. 25, 709 (2007).

    CAS  Google Scholar 

  44. F. Song, X. Shen, J. Xiang, and H. Song: Formation and magnetic properties of M-Sr ferrite hollow fibers via organic gel-precursor transformation process. Mater. Chem. Phys. 120, 213 (2010).

    Article  CAS  Google Scholar 

  45. F.S. Tehrani, V. Daadmehr, A.T. Rezakhani, R.H. Akbarnejad, and S. Gholipour: Structural, magnetic, and optical properties of zinc- and copper-substituted nickel ferrite nanocrystals. J. Supercond. Novel Magn. 25, 2443 (2012).

    Article  CAS  Google Scholar 

  46. J.P. Singh, G. Dixit, R.C. Srivastava, H.M. Agrawal, and K. Asokan: Looking for the possibility of multiferroism in NiGd0.04Fe1.96O4 nanoparticle system. J. Phys. D: Appl. Phys. 44, 435306 (2011).

    Article  CAS  Google Scholar 

  47. X. Tang, B.Y. Zhao, and K.A. Hu: Preparation of M-Ba-ferrite fine powders by sugar-nitrates process. J. Mater. Sci. 41, 3867 (2006).

    Article  CAS  Google Scholar 

  48. A. Poorbafrani, P. Kameli, and H. Salamati: Structural, magnetic and electromagnetic wave absorption properties of SrFe12O19/ZnO nanocomposites. J. Mater. Sci. 48, 186 (2013).

    Article  CAS  Google Scholar 

  49. A. Singh, S.B. Narang, K. Singh, O.P. Pandey, and R.K. Kotnala: Electrical and magnetic properties of rare earth substituted strontium hexaferrites. J. Ceram. Process. Res. 11, 241 (2010).

    Google Scholar 

  50. I. Ali, M.U. Islam, M.S. Awan, and M. Ahmad: Effects of heat-treatment temperature on the microstructure, electrical and dielectric properties of M-type hexaferrites. J. Electron. Mater. 43, 512 (2014).

    Article  CAS  Google Scholar 

  51. S.B. Narang and I.S. Hudiara: Microwave dielectric properties of M-Type barium, calcium and strontium hexaferrite substituted with Co and Ti. J. Ceram. Process. Res. 7, 113 (2006).

    Google Scholar 

  52. I. Ali, M.U. Islam, M.S. Awan, and M. Ahmad: Effects of heat-treatment time on the structural, dielectric, electrical, and magnetic properties of BaM hexaferrite. J. Mater. Eng. Perform. 22, 2104 (2013).

    Article  CAS  Google Scholar 

  53. M. Karmakar, B. Mondal, M. Pal, and K. Mukherjee: Acetone and ethanol sensing of barium hexaferrite particles: A case study considering the possibilities of non-conventional hexaferrite sensor. Sens. Actuators, B 190, 627 (2014).

    Article  CAS  Google Scholar 

  54. S. Anjum, M.S. Rafique, M. Khaleeq-ur-Rahman, K. Siraj, A. Usman, S.I. Hussain, and S. Naseem: Investigation of induced parallel magnetic anisotropy at low deposition temperature in Ba-hexaferrites thin films. J. Magn. Magn. Mater. 324, 711 (2012).

    Article  CAS  Google Scholar 

  55. M. Rawat and K.L. Yadav: Study of structural, electrical, magnetic and optical properties of 0.65BaTiO3–0.35Bi0.5Na0.5TiO3–BiFeO3 multiferroic composite. J. Alloys Compd. 597, 188 (2014).

    Article  CAS  Google Scholar 

  56. A.A. Nourbakhsh, A. Vahedi, A. Nemati, M. Noorbakhsh, S.N. Mirsatari, M. Shaygan and K.J.D. Mackenzie: Optimization of the magnetic properties and microstructure of Co2+–La3+ substituted strontium hexaferrite by varying the production parameters. Ceram. Int. 40, 5675 (2014).

    Article  CAS  Google Scholar 

  57. S.M. Masoudpanah, S.A. Seyyed Ebrahimi, and C.K. Ong: Microstructure and magnetic properties of La–Co substituted strontium hexaferrite films prepared by pulsed laser deposition. J. Magn. Magn. Mater. 342, 134 (2013).

    Article  CAS  Google Scholar 

  58. H. Nishio, Y. Minachi, and H. Yamamoto: Effect of factors on coercivity in Sr–La–Co sintered ferrite magnets. IEEE Trans. Magn. 45, 5281 (2009).

    Article  CAS  Google Scholar 

  59. H. Nishio and H. Yamamoto: Effect of important factors on temperature variation of coercivity in Sr-La-co high-performance sintered ferrite magnets. IEEE Trans. Magn. 47, 3641 (2011).

    Article  CAS  Google Scholar 

  60. M.I. Oliva, P.G. Bercoff, and H.R. Bertorello: Application of FORC distributions to the study of magnetic interactions in ferrites of composition Ba1−xLax+δFe12−xCoxO19. J. Magn. Magn. Mater. 320, e100 (2008).

    Article  CAS  Google Scholar 

  61. F. Kools, A. Morel, R. Grossinger, J.M. Le Breton, and P. Tenaud: LaCo-substituted ferrite magnets, a new class of high-grade ceramic magnets; intrinsic and microstructural aspects. J. Magn. Magn. Mater. 242–245, 1270 (2002).

    Article  Google Scholar 

  62. L. Lechevallier, J.M. Le Breton, J. Teillet, A. Morel, F. Kools, and P. Tenaud: Mossbauer investigation of Sr1−xLaxFe12−yCoyO19 ferrites. Phys. B 327, 135 (2003).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to STIC-Kochi (Ernakulum) for XRD and UV–Vis–NIR, IIT Madras for VSM. We are highly thankful to Lovely Professional University for providing financial support (No. LPU/DRD/IPF/Sac/004) for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajeet Kumar Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, T., Kumar, S., Bhat, B.H. et al. Enhancement in physical properties of barium hexaferrite with substitution. Journal of Materials Research 30, 2753–2762 (2015). https://doi.org/10.1557/jmr.2015.244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.244

Navigation