Abstract
M-type barium hexaferrite powders were synthesized using modified Pechini sol gel auto combustion method. The powder samples were heat treated at 900 °C for 5 h and were subjected to the structural, thermal, dielectric, magnetic, and optical studies. X-ray powder diffraction patterns show the formation of pure phase of M-type hexaferrite. Thermal analysis reveals that the weight loss of precursor becomes constant after 680 °C. The presence of two prominent peaks near 430 and 580 cm−1 in Fourier transform infrared spectroscopy spectra indicates the formation of M-type hexaferrites. The M — H curve has been used to study the magnetic behavior. The maximum value of coercivity is found for x = 0.41, which is higher than that of the pure barium hexaferrite. The band gap dependency on composition was studied using UV–Vis NIR spectroscopy. It was found that the dielectric constant is high at low frequency and decreases with an increase in frequency. Hexagonal structure of hexaferrite is visualized in transmission electron images.
Similar content being viewed by others
References
M. Radwan, M.M. Rashad, and M.M. Hessien: Synthesis and characterization of barium hexaferrite nanoparticles. J. Mater. Process. Technol. 181, 106 (2007).
T. Gonzalez-Carreno, M.P. Morales, and C.J. Serna: Barium ferrite nanoparticles prepared directly by aerosol pyrolysis. Mater. Lett. 43, 97 (2000).
M. Cernea, S.G. Sandu, C. Galassi, R. Radu, and V. Kuncser: Magnetic properties of BaxSr1−xFe12O19 (x = 0.05–0.35) ferrites prepared by different methods. J. Alloys Compd. 561, 121 (2013).
P. Bhattacharya, S. Dhibar, G. Hatui, A. Mandal, T. Das, and C.K. Das: Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: A potential candidate for electromagnetic wave absorbing and energy storage device applications. RSC Adv. 4, 17039 (2014).
C. Navau, J. Prat-Camps, O. Romero-Isart, J.I. Cirac, and A. Sanchez: Long-distance transfer and routing of static magnetic fields. Phys. Rev. Lett. 112, 253901 (2014).
M.N. Ashiq, M.J. Iqbal, M. Najam-ul-Haq, P.H. Gomez, and A.M. Qureshi: Synthesis, magnetic and dielectric properties of Er–Ni doped Sr-hexaferrite nanomaterials for applications in high density recording media and microwave devices. J. Magn. Magn. Mater. 324, 15 (2012).
H.A. Patel, J. Byun, and C.T. Yavuz: Arsenic removal by magnetic nano-crystalline barium hexaferrite. J. Nanopart. Res. 14, 881 (2012).
V. Anbarasu, P.M. Md Gazzali, T. Karthik, A. Manigandan, and K. Sivakumar: Effect of divalent cation substitution in the magnetoplumbite structured BaFe12O19 system. J. Mater. Sci.: Mater. Electron. 24, 916 (2013).
Q. Jianxun, Z. Qiguo, G. Mingyuan, and H. Shen: Effect of aluminum substitution on microwave absorption properties of barium hexaferrite. J. Appl. Phys. 98, 103905 (2005).
A. Thakur, R.R. Singh, and P.B. Barman: Synthesis and characterizations of Nd3+ doped SrFe12O19 nanoparticles. Mater. Chem. Phys. 141, 562 (2013).
F.M.M. Pereira, C.A.R. Junior, M.R.P. Santos, R.S.T.M. Sohn, F.N.A. Freire, J.M. Sasaki, J.A.C. de Paiva, and A.S.B. Sombra: Structural and dielectric spectroscopy studies of the M-type barium strontium hexaferrite alloys (BaxSr1–xFe12O19). J. Mater. Sci.: Mater. Electron. 19, 627 (2008).
F. Khademi, A. Poorbafrani, P. Kameli, and H. Salamati: Structural, magnetic and microwave properties of Eu-doped barium hexaferrite powders. J. Supercond. Novel Magn. 25, 525 (2012).
P. Winotai, S. Thongmee, and I.M. Tang: Cation distribution in bismuth-doped M-type barium hexaferrite. Mater. Res. Bull. 35, 1747 (2000).
V.N. Dhage, M.L. Mane, A.P. Keche, C.T. Birajdar, and K.M. Jadhav: Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique. Phys. B 406, 789 (2011).
I. Bsoul and S.H. Mahmood: Magnetic and structural properties of BaFe12−xGaxO19 nanoparticles. J. Alloys Compd. 489, 110 (2010).
S. Ounnunkad: Improving magnetic properties of barium hexaferrites by La or Pr substitution. Solid State Commun. 138, 472 (2006).
H. Xiaogu, Z. Jing, W. Hongzhou, Y. Shaoteng, W. Lixi, and Z. Qitu: Er3+-substituted W-type barium ferrite: Preparation and electromagnetic properties. J. Rare Earths 28, 940 (2010).
H. Feng, L. Fernandez-Garcia, X.S. Liu, D-R. Zhu, M. Suárez, and J.L. Menendez: A strong magneto-optical activity in rare-earth La3+ substituted M-type strontium ferrites. J. Appl. Phys. 109, 113906 (2011).
H. Sozeri, I. Kuucuk, and H. Ozkan: Improvement in magnetic properties of La substituted BaFe12O19 particles prepared with an unusually low Fe/Ba molar ratio. J. Magn. Magn. Mater. 323, 1799 (2011).
I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, and M.A. Iqbal: Structural, electrical, and microstructure properties of nanostructured calcium doped Ba-hexaferrites synthesized by sol–gel method. J. Supercond. Novel Magn. 26, 3277 (2013).
M.K. Tehrani, A. Ghasemi, M. Moradi, and R.S. Alam: Wideband electromagnetic wave absorber using doped barium hexaferrite in Ku-band. J. Alloys Compd. 509, 8398 (2011).
M.L. Gregori, M.S. Pinho, R.C. Lima, J.C.S. Leandro, and T. Ogasawara: Effect of different dopants on the microwave properties of m-doped barium hexaferrites. Key Eng. Mater. 264–268, 1229 (2004).
X. Liu, P. Hernández-Gómez, K. Huang, S. Zhou, Y. Wang, X. Cai, H. Sun, and B. Ma: Research on La3+–Co2+-substituted strontium ferrite magnets for high intrinsic coercive force. J. Magn. Magn. Mater. 305, 524 (2006).
T. Kaur, B. Kaur, B.H. Bhat, S. Kumar, and A.K. Srivastava: Effect of calcination temperature on microstructure, dielectric, magnetic and optical properties of Ba0.7La0.3Fe11.7Co0.3O19 hexaferrite. Phys. B 456, 206 (2015).
A.G. Belous, O.I. V’yunov, E.V. Pashkova, V.P. Ivanitskii, and O.N. Gavrilenko: Mossbauer study and magnetic properties of M-type barium hexaferrite doped with Co+ Ti and Bi + Ti ions. J. Phys. Chem. B 110, 26477 (2006).
Y. Liu, M.G.B. Drew, Y. Liu, J. Wang, and M. Zhang: Preparation, characterization and magnetic properties of the doped barium hexaferrites BaFe12−2xCox/2Znx/2SnxO19, x=0.0–2.0. J. Magn. Magn. Mater. 322, 814 (2010).
F. Leccabue, R. Panizzieri, S. Garcia, N. Suarez, J.L. Sanchez, O. Ares, and X.R. Hua: Magnetic and mössbauer study of rare-earth-substituted M-, W- and X-type hexagonal ferrites. J. Mater. Sci. 25, 2765 (1990).
J.C. Corral-Huacuz and G. Mendoza-Suárez: Preparation and magnetic properties of Ir–Co and La–Zn substituted barium ferrite powders obtained by sol–gel. J. Magn. Magn. Mater. 242, 430 (2002).
Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishitawa, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, and Y. Tokura: Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity. Phys. Rev. Lett. 105, 257201 (2010).
A. Ghasemi: Remarkable influence of carbon nanotubes on microwave absorption characteristics of strontium ferrite/CNT nanocomposites. J. Magn. Magn. Mater. 323, 3133 (2011).
V.V. Soman, V.M. Nanoti, and D.K. Kulkarni: Dielectric and magnetic properties of Mg–Ti substituted barium hexaferrite. Ceram. Int. 39, 5713 (2013).
A. Ataie and A. Mali: Characteristics of barium hexaferrite nanocrystalline powders prepared by a sol–gel combustion method using inorganic agent. J. Electroceram. 21, 357 (2008).
A.P. Safronov, O.M. Samatov, A.I. Medvedev, I.V. Beketov, and A.M. Murzakaev: Synthesis of strontium hexaferrite nanopowder by the laser evaporation method. Nanotechnol. Russ. 7, 486 (2012).
X. Liu, J. Wang, L.M. Gan, S.C. Ng, and J. Ding: An ultrafine barium ferrite powder of high coercivity from water-in-oil microemulsion. J. Magn. Magn. Mater. 184, 344 (1998).
M.C. Dimri, S.C. Kashyap, and D.C. Dube: Electrical and magnetic properties of barium hexaferrite nanoparticles prepared by citrate precursor method. Ceram. Int. 30, 1623 (2004).
H. Li, J. Huang, Q. Li, and X. Su: Preparation of barium ferrite films with high Fe/Ba ratio by sol–gel method. J. Sol-Gel Sci. Technol. 52, 309 (2009).
A. Gonzalez-Angeles, G. Mendoza-Suárez, A. Grusková, I. Tóth, V. Jančárik, M. Papánová, and J.I. Escalante-Garcı: Magnetic studies of NiSn-substituted barium hexaferrites processed by attrition milling. J. Magn. Magn. Mater. 270, 77 (2004).
L. Qin and H. Verweij: Modified Pechini synthesis of hexaferrite Co2Z with high permeability. Mater. Lett. 68, 143 (2012).
W.Y. Zhao, P. Wei, H.B. Cheng, X.F. Tang, and Q.J. Zhang: FTIR spectra, lattice shrinkage, and magnetic properties of CoTi-substituted M-type barium hexaferrite nanoparticles. J. Am. Ceram. Soc. 90, 2095 (2007).
M.J. Iqbal and M.N. Ashiq: Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136, 383 (2008).
I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, and M.A. Iqbal: Structural and magnetic properties of nano-structured Eu3+ substituted M-type hexaferrites synthesized by sol–gel auto-combustion technique. J. Supercond. Novel Magn. 26, 3315 (2013).
A. Thakur, R.R. Singh, and P.B. Barman: Structural and magnetic properties of La3+ substituted strontium hexaferrite nanoparticles prepared by citrate precursor method. J. Magn. Magn. Mater. 326, 35 (2013).
S. Ilican, M. Caglar, and Y. Caglar: Determination of the thickness and optical constants of transparent indium-doped ZnO thin films by the envelope method. Mater. Sci.-Pol. 25, 709 (2007).
F. Song, X. Shen, J. Xiang, and H. Song: Formation and magnetic properties of M-Sr ferrite hollow fibers via organic gel-precursor transformation process. Mater. Chem. Phys. 120, 213 (2010).
F.S. Tehrani, V. Daadmehr, A.T. Rezakhani, R.H. Akbarnejad, and S. Gholipour: Structural, magnetic, and optical properties of zinc- and copper-substituted nickel ferrite nanocrystals. J. Supercond. Novel Magn. 25, 2443 (2012).
J.P. Singh, G. Dixit, R.C. Srivastava, H.M. Agrawal, and K. Asokan: Looking for the possibility of multiferroism in NiGd0.04Fe1.96O4 nanoparticle system. J. Phys. D: Appl. Phys. 44, 435306 (2011).
X. Tang, B.Y. Zhao, and K.A. Hu: Preparation of M-Ba-ferrite fine powders by sugar-nitrates process. J. Mater. Sci. 41, 3867 (2006).
A. Poorbafrani, P. Kameli, and H. Salamati: Structural, magnetic and electromagnetic wave absorption properties of SrFe12O19/ZnO nanocomposites. J. Mater. Sci. 48, 186 (2013).
A. Singh, S.B. Narang, K. Singh, O.P. Pandey, and R.K. Kotnala: Electrical and magnetic properties of rare earth substituted strontium hexaferrites. J. Ceram. Process. Res. 11, 241 (2010).
I. Ali, M.U. Islam, M.S. Awan, and M. Ahmad: Effects of heat-treatment temperature on the microstructure, electrical and dielectric properties of M-type hexaferrites. J. Electron. Mater. 43, 512 (2014).
S.B. Narang and I.S. Hudiara: Microwave dielectric properties of M-Type barium, calcium and strontium hexaferrite substituted with Co and Ti. J. Ceram. Process. Res. 7, 113 (2006).
I. Ali, M.U. Islam, M.S. Awan, and M. Ahmad: Effects of heat-treatment time on the structural, dielectric, electrical, and magnetic properties of BaM hexaferrite. J. Mater. Eng. Perform. 22, 2104 (2013).
M. Karmakar, B. Mondal, M. Pal, and K. Mukherjee: Acetone and ethanol sensing of barium hexaferrite particles: A case study considering the possibilities of non-conventional hexaferrite sensor. Sens. Actuators, B 190, 627 (2014).
S. Anjum, M.S. Rafique, M. Khaleeq-ur-Rahman, K. Siraj, A. Usman, S.I. Hussain, and S. Naseem: Investigation of induced parallel magnetic anisotropy at low deposition temperature in Ba-hexaferrites thin films. J. Magn. Magn. Mater. 324, 711 (2012).
M. Rawat and K.L. Yadav: Study of structural, electrical, magnetic and optical properties of 0.65BaTiO3–0.35Bi0.5Na0.5TiO3–BiFeO3 multiferroic composite. J. Alloys Compd. 597, 188 (2014).
A.A. Nourbakhsh, A. Vahedi, A. Nemati, M. Noorbakhsh, S.N. Mirsatari, M. Shaygan and K.J.D. Mackenzie: Optimization of the magnetic properties and microstructure of Co2+–La3+ substituted strontium hexaferrite by varying the production parameters. Ceram. Int. 40, 5675 (2014).
S.M. Masoudpanah, S.A. Seyyed Ebrahimi, and C.K. Ong: Microstructure and magnetic properties of La–Co substituted strontium hexaferrite films prepared by pulsed laser deposition. J. Magn. Magn. Mater. 342, 134 (2013).
H. Nishio, Y. Minachi, and H. Yamamoto: Effect of factors on coercivity in Sr–La–Co sintered ferrite magnets. IEEE Trans. Magn. 45, 5281 (2009).
H. Nishio and H. Yamamoto: Effect of important factors on temperature variation of coercivity in Sr-La-co high-performance sintered ferrite magnets. IEEE Trans. Magn. 47, 3641 (2011).
M.I. Oliva, P.G. Bercoff, and H.R. Bertorello: Application of FORC distributions to the study of magnetic interactions in ferrites of composition Ba1−xLax+δFe12−xCoxO19. J. Magn. Magn. Mater. 320, e100 (2008).
F. Kools, A. Morel, R. Grossinger, J.M. Le Breton, and P. Tenaud: LaCo-substituted ferrite magnets, a new class of high-grade ceramic magnets; intrinsic and microstructural aspects. J. Magn. Magn. Mater. 242–245, 1270 (2002).
L. Lechevallier, J.M. Le Breton, J. Teillet, A. Morel, F. Kools, and P. Tenaud: Mossbauer investigation of Sr1−xLaxFe12−yCoyO19 ferrites. Phys. B 327, 135 (2003).
ACKNOWLEDGMENTS
We are thankful to STIC-Kochi (Ernakulum) for XRD and UV–Vis–NIR, IIT Madras for VSM. We are highly thankful to Lovely Professional University for providing financial support (No. LPU/DRD/IPF/Sac/004) for this research work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kaur, T., Kumar, S., Bhat, B.H. et al. Enhancement in physical properties of barium hexaferrite with substitution. Journal of Materials Research 30, 2753–2762 (2015). https://doi.org/10.1557/jmr.2015.244
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2015.244