Skip to main content

Advertisement

Log in

Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A CoCrFeNiMn high-entropy alloy (HEA), in the form of a face-centered cubic (fcc) solid solution, was processed by high-pressure torsion (HPT) to produce a nanocrystalline (nc) HEA. Significant grain refinement was achieved from the very early stage of HPT through 1/4 turn and an nc structure with an average grain size of ∼40 nm was successfully attained after 2 turns. The feasibility of significant microstructural changes was attributed to the occurrence of accelerated atomic diffusivity under the torsional stress during HPT. Nanoindentation experiments showed that the hardness increased significantly in the nc HEA during HPT processing and this was associated with additional grain refinement. The estimated values of the strain-rate sensitivity were maintained reasonably constant from the as-cast condition to the nc alloy after HPT through 2 turns, thereby demonstrating a preservation of plasticity in the HEA. In addition, a calculation of the activation volume suggested that the grain boundaries play an important role in the plastic deformation of the nc HEA where the flow mechanism is consistent with other nc metals. Transmission electron microscopy showed that, unlike conventional fcc nc metals, the nc HEA exhibits excellent microstructural stability under severe stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2004).

    Article  CAS  Google Scholar 

  2. J-W. Yeh, S-K. Chen, S-J. Lin, J-Y. Gan, T-S. Chin, T-T. Shun, C-H. Tsau, and S-Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  3. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).

    Article  CAS  Google Scholar 

  4. B.S. Murty, J.W. Yeh, and S. Ranganathan: High-Entropy Alloys (Butterworth-Heinemann, London, UK, 2014).

    Google Scholar 

  5. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62, 105 (2014).

    Article  CAS  Google Scholar 

  6. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).

    Article  CAS  Google Scholar 

  7. O.N. Senkov, J. Scott, and S. Senkova: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47, 4062 (2012).

    Article  CAS  Google Scholar 

  8. C. Zhu, Z.P. Lu, and T.G. Nieh: Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 61, 2993 (2013).

    Article  CAS  Google Scholar 

  9. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).

    Article  CAS  Google Scholar 

  10. W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu: Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 68, 526 (2013).

    Article  CAS  Google Scholar 

  11. Y. Wu, W.H. Liu, X.L. Wang, D. Ma, A.D. Stoica, T.G. Nieh, Z.B. He, and Z.P. Lu: In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Appl. Phys. Lett. 104, 051910 (2014).

    Article  CAS  Google Scholar 

  12. G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, and E.P. George: Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 623, 348 (2015).

    Article  CAS  Google Scholar 

  13. W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, and Z. Fu: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56, 24 (2015).

    Article  CAS  Google Scholar 

  14. N. Stepanov, M. Tikhonovsky, N. Yurchenko, D. Zyabkin, M. Klimova, S. Zherebtsov, A. Efimov, and G. Salishchev: Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics 59, 8 (2015).

    Article  CAS  Google Scholar 

  15. H. Gleiter: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989).

    Article  CAS  Google Scholar 

  16. R. Valiev: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).

    Article  CAS  Google Scholar 

  17. M.A. Meyer, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  18. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).

    Article  CAS  Google Scholar 

  19. T. Zhu and J. Li: Ultra-strength materials. Prog. Mater. Sci. 55, 710 (2010).

    Article  Google Scholar 

  20. I-C. Choi, Y-J. Kim, M-Y. Seok, B-G. Yoo, J-Y. Kim, Y. Wang, and J-I. Jang: Nanoscale room temperature creep of nanocrystalline nickel pillars at low stresses. Int. J. Plast. 41, 53 (2013).

    Article  CAS  Google Scholar 

  21. Y. Ma, G.J. Peng, D.H. Wen, and T.H. Zhang: Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states. Mater. Sci. Eng., A 621, 111 (2015).

    Article  CAS  Google Scholar 

  22. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang: Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J. Alloys Compd. 485, 31 (2009).

    Article  CAS  Google Scholar 

  23. S. Varalakshmi, M. Kamaraj, and B.S. Murty: Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater. Sci. Eng., A 527, 1027–1030 (2010).

    Article  CAS  Google Scholar 

  24. S. Praveen, B.S. Murty, and S. Kottada Ravi: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng., A 534, 83 (2012).

    Article  CAS  Google Scholar 

  25. R.Z. Valiev and T.G. Langdon: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).

    Article  CAS  Google Scholar 

  26. A.P. Zhilyaev and T.G. Langdon: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53, 893 (2008).

    Article  CAS  Google Scholar 

  27. T.G. Langdon: Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 61, 7035 (2013).

    Article  CAS  Google Scholar 

  28. Q.H. Tang, Y. Huang, Y.Y. Huang, X.Z. Liao, T.G. Langdon, and P.Q. Dai: Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing. Mater. Lett. 151, 126 (2015).

    Article  CAS  Google Scholar 

  29. A.P. Zhilyaev, B.K. Kim, G.V. Nurislamova, M.D. Baró, J.A. Szpunar, and T.G. Langdon: Orientation imaging microscopy of ultrafine-grained nickel. Scr. Mater. 46, 575 (2002).

    Article  CAS  Google Scholar 

  30. A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baró, J.A. Szpunar, and T.G. Langdon: Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater. 51, 753 (2003).

    Article  CAS  Google Scholar 

  31. J. Wongsa-Ngam, M. Kawasaki, and T.G. Langdon: A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. J. Mater. Sci. 48, 4653 (2013).

    Article  CAS  Google Scholar 

  32. R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch, and B. Baudelet: Structure and deformaton behaviour of Armco iron subjected to severe plastic deformation. Acta Mater. 44, 4705 (1996).

    Article  CAS  Google Scholar 

  33. R.B. Figueiredo, P.R. Cetlin, and T.G. Langdon: Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater. Sci. Eng., A 528, 8198 (2011).

    Article  CAS  Google Scholar 

  34. R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar, P.R. Cetlin, and T.G. Langdon: Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater. 60, 3190 (2012).

    Article  CAS  Google Scholar 

  35. B.N. Lucas and W.C. Oliver: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30A, 601 (1999).

    Article  CAS  Google Scholar 

  36. M. Kawasaki and T.G. Langdon: The significance of strain reversals during processing by high-pressure torsion. Mater. Sci. Eng., A 498, 341 (2008).

    Article  CAS  Google Scholar 

  37. M. Kawasaki: Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J. Mater. Sci. 49, 18 (2014).

    Article  CAS  Google Scholar 

  38. G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, and O.N. Senkov: Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J. Alloys Compd. 591, 11 (2014).

    Article  CAS  Google Scholar 

  39. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  40. I-C. Choi, D-H. Lee, B. Ahn, K. Durst, M. Kawasaki, T.G. Langdon, and J-I. Jang: Enhancement of strain-rate sensitivity and shear yield strength of a magnesium alloy processed by high-pressure torsion. Scr. Mater. 94, 44 (2015).

    Article  CAS  Google Scholar 

  41. I-C. Choi, Y-J. Kim, B. Ahn, M. Kawasaki, T.G. Langdon, and J-I. Jang: Evolution of plasticity, strain-rate sensitivity and the underlying deformation mechanism in Zn–22% Al during high-pressure torsion. Scr. Mater. 75, 102 (2014).

    Article  CAS  Google Scholar 

  42. K-Y. Tsai, M-H. Tsai, and J-W. Yeh: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887 (2013).

    Article  CAS  Google Scholar 

  43. S-Y. Chang, C-E. Li, Y-C. Huang, H-F. Hsu, J-W. Yeh, and S-J. Lin: Structural and thermodynamic factors of suppressed interdiffusion kinetics in multi-component high-entropy materials. Sci. Reports 4, 4162 (2014).

    Google Scholar 

  44. P.P. Bhattacharjee, G.D. Sathiara, M. Zaid, J.R. Gatti, C. Lee, C-W. Tsai, and J-W. Yeh: Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 587, 544 (2014).

    Article  CAS  Google Scholar 

  45. Y. Amouyal, S.V. Divinski, Y. Estrin, and E. Rabkin: Short-circuit diffusion in an ultrafine-grained copper–zirconium alloy produced by equal channel angular pressing. Acta Mater. 55, 5968 (2007).

    Article  CAS  Google Scholar 

  46. S.V. Divinski, J. Ribbe, D. Baither, G. Schmitz, G. Reglitz, H. Rösner, K. Sato, Y. Estrin, and G. Wilde: Nano- and micro-scale free volume in ultrafine grained Cu–1 wt.% Pb alloy deformed by equal channel angular pressing. Acta Mater. 57, 5706 (2009).

    Article  CAS  Google Scholar 

  47. S.V. Divinski, J. Ribbe, G. Reglitz, Y. Estrin, and G. Wilde: Percolating network of ultrafast transport channels in severely deformed nanocrystalline metals. J. Appl. Phys. 106, 063502 (2009).

    Article  CAS  Google Scholar 

  48. S.V. Divinski, G. Reglitz, H. Rösner, Y. Estrin, and G. Wilde: Ultra-fast diffusion channels in pure Ni severely deformed by equal-channel angular pressing. Acta Mater. 59, 1974 (2011).

    Article  CAS  Google Scholar 

  49. K. Oh-ishi, K. Edalati, H-S. Kim, K. Hono, and Z. Horita: High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in the aluminum–copper system. Acta Mater. 61, 3482 (2013).

    Article  CAS  Google Scholar 

  50. B. Ahn, A.P. Zhilyaev, H-J. Lee, M. Kawasaki, and T.G. Langdon: Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature. Mater. Sci. Eng., A 635, 109 (2015).

    Article  CAS  Google Scholar 

  51. Y. Minamino, T. Yamane, and A. Shimomura: Effect of high pressure on interdiffusion in an Al-Mg alloy. J. Mater. Sci. 18, 2679 (1983).

    Article  CAS  Google Scholar 

  52. K. Edalati, R. Miresmaeili, Z. Horita, H. Kanayama, and R. Pippan: Significance of temperature increase in processing by high-pressure torsion. Mater. Sci. Eng., A 528, 7301 (2011).

    Article  CAS  Google Scholar 

  53. P.H.R. Pereira, R.B. Figueiredo, Y. Huang, P.R. Cetlin, and T.G. Langdon: Modeling the temperature rise in high-pressure torsion. Mater. Sci. Eng., A 593, 185 (2014).

    Article  CAS  Google Scholar 

  54. H-S. Kim: Finite element analysis of high pressure torsion processing. J. Mater. Process. Technol. 113, 617 (2001).

    Article  Google Scholar 

  55. I-C. Choi, Y-J. Kim, Y.M. Wang, U. Ramamurty, and J-I. Jang: Nanoindentation behavior of nanotwinned Cu: Influences of indenter angle on hardness, strain rate sensitivity and activation volume. Acta Mater. 61, 7313 (2013).

    Article  CAS  Google Scholar 

  56. S. Shim, J-I. Jang, and G.M. Pharr: Extraction of flow properties of single crystal silicon carbide by nanoindentation and finite element simulation. Acta Mater. 56, 3824 (2008).

    Article  CAS  Google Scholar 

  57. C.L. Wang, Y.H. Lai, J.C. Huang, and T.G. Nieh: Creep of nanocrystalline nickel: A direct comparison between uniaxial and nanoindentation creep. Scr. Mater. 62, 175 (2010).

    Article  CAS  Google Scholar 

  58. F. Dalla Torre, P. Spätig, R. Schäublin, and M. Victoria: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 53, 2337 (2005).

    Article  CAS  Google Scholar 

  59. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 (2003).

    Article  CAS  Google Scholar 

  60. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: Fcc versus bcc metals. Mater. Sci. Eng., A 381, 71 (2004).

    Article  CAS  Google Scholar 

  61. J. Chen, L. Lu, and K. Lu: Hardness and strain rate sensitivity of nanocrystalline Cu. Scr. Mater. 54, 1913 (2006).

    Article  CAS  Google Scholar 

  62. Y.M. Wang, A.V. Hamza, and E. Ma: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54, 2715 (2006).

    Article  CAS  Google Scholar 

  63. T. Zhu, J. Li, A. Samanta, H-G. Kim, and S. Suresh: Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl. Acad. Sci. USA 104, 3031 (2007).

    Article  CAS  Google Scholar 

  64. H. Conrad: Grain size dependence of the plastic deformation kinetics in Cu. Mater. Sci. Eng., A 341, 216 (2003).

    Article  Google Scholar 

  65. H. Conard: Plastic deformation kinetics in nanocrystalline FCC metals based on the pile-up of dislocations. Nanotechnology 18, 325701 (2007).

    Article  CAS  Google Scholar 

  66. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps (Pergamon Press, Oxford, 1982).

    Google Scholar 

  67. Z. Wu, H. Bei, G.M. Pharr, and E.P. George: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428 (2014).

    Article  CAS  Google Scholar 

  68. E. Ma: Watching the nanograins roll. Science 305, 623 (2004).

    Article  CAS  Google Scholar 

  69. R.J. Asaro and S. Suresh: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369 (2005).

    Article  CAS  Google Scholar 

  70. D. Wu, J. Zhang, J.C. Huang, H. Bei, and T.G. Nieh: Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals. Scr. Mater. 68, 118 (2013).

    Article  CAS  Google Scholar 

  71. M. Jin, A.M. Minor, E.A. Stach, and J.W. Morris: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381 (2004).

    Article  CAS  Google Scholar 

  72. K. Zhang, J.R. Weertman, and J.A. Eastman: The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper. Appl. Phys. Lett. 85, 5197 (2004).

    Article  CAS  Google Scholar 

  73. K. Zhang, J.R. Weertman, and J.A. Eastman: Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl. Phys. Lett. 87, 061921 (2005).

    Article  CAS  Google Scholar 

  74. X.Z. Liao, A.R. Kilmametov, R.Z. Valiev, H. Gao, X. Li, A.K. Mukherjee, J.F. Bingert, and Y.T. Zhu: High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl. Phys. Lett. 88, 021909 (2006).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research of JIJ and DHL was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2013R1A1A2A10058551), and in part by the Human Resources Development program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (No. 20134030200360). The work of MK was supported in part by the NRF Korea funded by MoE under Grant No. NRF-2014R1A1A2057697. The work of TGL was supported by the National Science Foundation of the United States under Grant No. DMR-1160966 and by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Megumi Kawasaki or Jae-il Jang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, DH., Choi, IC., Seok, MY. et al. Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Journal of Materials Research 30, 2804–2815 (2015). https://doi.org/10.1557/jmr.2015.239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.239

Navigation