Skip to main content
Log in

Polymer opal with brilliant structural color under natural light and white environment

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structural color films with enough brilliant color have attracted a special attention because of the great advantages in some practical application, which has currently become a research hot-spot. But their simple fabrication is still a great challenge. This study presents brilliant polymer opal structural color films (PSCFs) from polystyrene spheres under natural light by using a simple preparation and assembly strategy. In this strategy, the black organic dye water solution was used as the dispersion medium for polystyrene spheres, and then polystyrene spheres were rapidly fabricated to one ordered structures by the thermal assistance self-assembly method, which is cheap and commonly available. Contrast to other many structural color films irradiated by external light source under black background, the PSCFs exhibit brilliant and tunable structural colors under natural light even in a white environment, which is significant for the potential application of PSCFs in paint, photonic paper, external decoration of architectures, display, and bioassay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
SCHEME 1
FIG. 4
FIG. 5
SCHEME 2
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. Z-Z. Gu, H. Uetsuka, and K. Takahashi: Structural color and the lotus effect. Angew. Chem., Int. Ed. 42, 894–897 (2003).

    Article  CAS  Google Scholar 

  2. W. Barthlott and C. Neinhuis: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997).

    Article  CAS  Google Scholar 

  3. H. Kasukawa, N. Oshima, and R. Fujii: Mechanism of light-reflection in blue damselfish motile iridophore. Zool. Sci. 4, 243–257 (1987).

    Google Scholar 

  4. S. John: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489(1987).

  5. E. Yablonovitch: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  CAS  Google Scholar 

  6. E. Yablonovitch: Optics liquid versus photonic crystals. Nature 401, 539–541 (1999).

    Article  CAS  Google Scholar 

  7. V. Sharma, M. Crne, J.O. Park, and M. Srinivasarao: Structural origin of circularly polarized iridescence in jeweled beetles. Science 325, 449–451 (2009).

    Article  CAS  Google Scholar 

  8. J. MacLeod and F. Rosei: Photonic crystals: Sustainable sensors from silk. Nat. Mater. 12, 98–100 (2013).

    Article  CAS  Google Scholar 

  9. J. Li, G. Liang, X. Zhu, and S. Yang: Exploiting nanoroughness on holographically patterned three-dimensional photonic crystals. Adv. Funct. Mater. 22, 2980–2986 (2012).

    Article  CAS  Google Scholar 

  10. M. Kolle, P.M. Salgard-Cunha, and M.R.J. Scherer: Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nat. Nanotechnol. 5, 511–515 (2010).

    Article  CAS  Google Scholar 

  11. S.H. Kim, S.Y. Lee, S.M. Yang, and G.R. Yi: Self-assembled colloidal structures for photonics. NPG Asia Mater. 3, 25–33 (2011).

    Article  CAS  Google Scholar 

  12. S. Yoshioka, S. Kinoshita, H. Iida, and T. Hariyama: Phase-adjusting layers in the multilayer reflector of a jewel beetle. J. Phys. Soc. Jpn. 5, 054801 (2012).

    Article  CAS  Google Scholar 

  13. Z.L. Wu and J.P. Gong: Hydrogels with self-assembling ordered structures and their functions. NPG Asia Mater. 3, 57–64 (2011).

    Article  Google Scholar 

  14. S. Yoshioka, B. Matsuhana, S. Tanaka, Y. Inouye, N. Oshima, and S. Kinoshita: Mechanism of variable structural colour in the neon tetra: Quantitative evaluation of the Venetian blind model. J. R. Soc., Interface 8, 56–66 (2011).

    Article  CAS  Google Scholar 

  15. M.A. Haque, T. Kurokawa, and J.P. Gong: Anisotropic hydrogel based on bilayers: Color, strength, toughness, and fatigue resistance. Soft Matter 8, 8008–8016 (2012).

    Article  CAS  Google Scholar 

  16. M.A. Haque, G. Kamita, T. Kurokawa, K. Tsujii, and J.P. Gong: Unidirectional alignment of lamellar bilayer in hydrogel: One-dimensional swelling, anisotropic modulus, and stress/strain tunable structural color. Adv. Mater. 22, 5110–5114 (2010).

    Article  CAS  Google Scholar 

  17. L.D. Bonifacio, D.P. Puzzo, S. Breslav, B.M. Willey, A. McGeer, and G.A. Ozin: Towards the photonic nose: A novel platform for molecule and bacteria identification. Adv. Mater. 2, 1351–1354 (2010).

    Article  CAS  Google Scholar 

  18. A.C. Arsenault, D.P. Puzzo, A. Ghoussoub, I. Manners, and G.A. Ozin: Development of photonic crystal composites for display applications. J. Soc. Inf. Disp. 15, 1095–1098 (2007).

    Article  CAS  Google Scholar 

  19. N. Kumano, T. Seki, M. Ishii, H. Nakamura, and Y. Takeoka: Tunable angle-independent structural color from a phase-separated porous gel. Angew. Chem., Int. Ed. 123, 4012–4015 (2011).

    Article  CAS  Google Scholar 

  20. H. Kim, J.P. Ge, J. Kim, S. Choi, H. Lee, W. Park, Y.D. Yin, and S. Kwon: Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat. Photonics 3, 534–540 (2009).

    Article  CAS  Google Scholar 

  21. M.A. Haque, T. Kurokawa, G. Kamita, Y.F. Yue, and J.P. Gong: Rapid and reversible tuning of structural color of a hydrogel over the entire visible spectrum by mechanical stimulation. Chem. Mater. 23, 5200–5207 (2011).

    Article  CAS  Google Scholar 

  22. A.W. Clark and J.M. Cooper: Cover picture: Plasmon shaping by using protein nanoarrays and molecular lithography to engineer structural color. Angew. Chem., Int. Ed. 51, 3562–3566 (2012).

    Article  CAS  Google Scholar 

  23. D.P. Puzzo, L.D. Bonifacio, J. Oreopoulos, C.M. Yip, I. Manners, and G.A. Ozin: Color from colorless nanomaterials: Bragg reflectors made of nanoparticles. J. Mater. Chem. 19, 3500–3506 (2009).

    Article  CAS  Google Scholar 

  24. C. Zhu, W.Y. Xu, L.S. Chen, W.D. Zhang, H. Xu, and Z. Gu: Magnetochromatic microcapsule arrays for displays. Adv. Funct. Mater. 21, 2043–2048 (2011).

    Article  CAS  Google Scholar 

  25. H.F. Hao, C. Punckt, E.Y. Leung, H.C. Schniepp, and I.A. Aksay: Tuning of structural color using a dielectric actuator and multifunctional compliant electrodes. Opt. Appl. 49, 6689–6696 (2010).

    Article  Google Scholar 

  26. J. Ge, J. Goebl, L. He, Z. Lu, and Y. Yin: Rewritable photonic paper with hygroscopic salt solution as ink. Adv. Mater. 21, 4259–4264 (2009).

    Article  CAS  Google Scholar 

  27. Y. Takeoka, M. Honda, T. Seki, M. Ishii, and H. Nakamura: Structural colored liquid membrane without angle dependence. ACS Appl. Mater. Interfaces 1, 982–986 (2009).

    Article  CAS  Google Scholar 

  28. F. Fleischhaker and R. Zentel: Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots. Chem. Mater. 17, 1346–1351 (2005).

    Article  CAS  Google Scholar 

  29. J.P. Ge and Y.D. Yin: Magnetically tunable colloidal photonic structures in alkanol solutions. Adv. Mater. 20, 3485–3491 (2008).

    Article  CAS  Google Scholar 

  30. J. Ge, Y. Hu, and Y. Yin: Highly tunable superparamagnetic colloidal photonic crystals. Angew. Chem., Int. Ed. 119, 7572–7575 (2007).

    Article  Google Scholar 

  31. O. Sato, S. Kubo, and Z.Z. Gu: Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. Acc. Chem. Res. 42, 1–10 (2008).

    Article  CAS  Google Scholar 

  32. G. Subramania, K. Constant, R. Biswas, M.M. Sigalas, and K.M. Ho: Inverse face-centered cubic thin film photonic crystals. Adv. Mater. 13, 443–446 (2001).

    Article  CAS  Google Scholar 

  33. Z. Shen, L. Shi, B. You, L. Wu, and D. Zhao: Large-scale fabrication of three-dimensional ordered polymer films with strong structure colors and robust mechanical properties. J. Mater. Chem. 22, 8069–8075 (2012).

    Article  CAS  Google Scholar 

  34. S. Zhang, X. Zhao, H. Xu, R. Zhu, and Z. Gu: Fabrication of photonic crystals with nigrosine-doped poly(MMA-co-DVB-co-MAA) particles. J. Colloid Interface Sci. 316, 168–174 (2007).

    Article  CAS  Google Scholar 

  35. A. Mocanu, E. Rusen, B. Marculescu, and C. Cincu: Synthesis and characterization of a hybrid material from self-assembling colloidal particles and carbon nanotubes. Colloid Polym. Sci. 289, 387–394 (2011).

    Article  CAS  Google Scholar 

  36. P. Jiang, J.F. Bertone, K.S. Hwang, and V.L. Colvin: Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11, 2132–2140 (1999).

    Article  CAS  Google Scholar 

  37. J.H. Zhang, Z.Q. Sun, and B. Yang: Self-assembly of photonic crystals from polymer colloids. Curr. Opin. Colloid Interface Sci. 14, 103–114 (2009).

    Article  CAS  Google Scholar 

  38. H. Fudouzi and Y.N. Xia: Colloidal crystals with tunable colors and their use as photonic papers. Langmuir 19, 9653–9660 (2003).

    Article  CAS  Google Scholar 

  39. S.J. Woltman, G.D. Jay, and G.P. Crawford: Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 6, 929–938 (2007).

    Article  CAS  Google Scholar 

  40. L. Siefferman and G.E. Hill: Structural and melanin coloration indicate parental effort and r eproductive success in male eastern bluebirds. Behav. Ecol. Sociobiol. 14, 855–861 (2003).

    Article  Google Scholar 

  41. S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto: Photophysics of structural color in the morpho butterflies. Forma 17, 103–121 (2002).

    Google Scholar 

  42. S.H. Im, Y.T. Lim, D.J. Auh, and O.O. Park: Three-Dimensional self-assembly of colloids at a water–air interface: A novel technique for the fabrication of photonic bandgap crystals. Adv. Mater. 14, 1367–1371 (2002).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (21276042), the National Science and Technology Pillar Program (2013BAF08B06), the Jiaogai Foundation of DUT (JGXM201224), and Fundamental Research Funds for the Central Universities of China (DUT13LK35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingtao Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B., Xu, Y., Lin, T. et al. Polymer opal with brilliant structural color under natural light and white environment. Journal of Materials Research 30, 3134–3141 (2015). https://doi.org/10.1557/jmr.2015.238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.238

Navigation