Skip to main content
Log in

Effect of BaCu(B2O5) additions on the sintering behaviors and dielectric-magnetic properties of Co2Z hexaferrite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, BaCu(B2O5) (BCB) is utilized as the sintering aids to decrease the sintering temperature of Ba3(Co0.4Zn0.6)2Fe24O41 [(Co0.4Zn0.6)2Z]. The influence of BCB addition on the microstructures as well as the dielectric and magnetic properties of the (Co0.4Zn0.6)2Z ceramic samples is investigated. It is found that the 5 wt% BCB added (Co0.4Zn0.6)2Z sintered at 925 °C exhibits both a high relative density of about 95% and a homogeneous microstructure with few pores existing. Both the relative permittivity and permeability of the sample keep stable from 10 to 800 MHz. Also, the dielectric and magnetic loss are low and effectively suppressed within a wide frequency range. For the specimen with 5 wt% BCB, the dielectric and magnetic loss tangent are 0.003 and 0.039 at 200 MHz, respectively. In addition, a compatibility test with Ag powders has been carried out. The optimized properties indicate that this kind of low temperature sintered Z-type hexaferrite is a good candidate for the applications of multilayer chip inductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. L.J. Jia, J. Luo, H.W. Zhang, G. Xue, and Y. Jing: High-frequency properties of Si-doped Z-type hexaferrites. J. Alloys Compd. 489, 162 (2010).

    Article  CAS  Google Scholar 

  2. X.H. Wang, L.T. Li, Z.X. Yue, and S.Y. Su: Effect of SiO2 additive on the high-frequency properties of low-temperature fired Co2Z. J. Magn. Magn. Mater. 271, 301 (2004).

    Article  CAS  Google Scholar 

  3. X.H. Wang, L.T. Li, S.Y. Su, and Z.X. Yue: Electromagnetic properties of low-temperature-sintered Ba3Co2−xZnxFe24O41 ferrites prepared by solid state reaction method. J. Magn. Magn. Mater. 280, 10 (2004).

    Article  CAS  Google Scholar 

  4. L.J. Jia, H.W. Zhang, Y.L. Liu, Z.Y. Zhong, and Q.Y. Wen: Effects of mixing procedure and Bi2O3 content on structural and magnetic properties of hexaferrites sintered at low temperature. J. Magn. Magn. Mater. 316, 67 (2007).

    Article  CAS  Google Scholar 

  5. O. Kimura, K. Shoji, and H. Maiwa: Low temperature sintering of iron deficient Z type hexagonal ferrites. J. Eur. Ceram. Soc. 26, 2845 (2006).

    Article  CAS  Google Scholar 

  6. H. Saita, Y. Fang, A. Nakano, D. Agrawal, M.T. Lanagan, T.R. Shrout, and C.A. Randall: Microwave sintering study of NiCuZn ferrite ceramics and devices. Jpn. J. Appl. Phys. 41, 86 (2002).

    Article  CAS  Google Scholar 

  7. J.H. Nam, H.H. Jung, J.Y. Shin, and J.H. Oh: The effect of Cu substitution on the electrical and magnetic properties of NiZn ferrites. IEEE Trans. Magn. 31, 3985 (1995).

    Article  CAS  Google Scholar 

  8. A.A. Birajdar, S.E. Shirsath, R.H. Kadam, S.M. Patange, K.S. Lohar, D.R. Mane, and A.R. Shitre: Role of Cr3+ ions on the microstructure development, and magnetic phase evolution of Ni0.7Zn0.3Fe2O4 ferrite nanoparticles. J. Alloys Compd. 512, 316 (2012).

    Article  CAS  Google Scholar 

  9. W. Zhang, Y. Bai, X. Han, L. Wang, X. Lu, L. Qiao, J. Cao, and D. Guo: Phase formation, sintering behavior and magnetic property of Bi–Co–Ti substituted M-type barium hexaferrite. J. Alloys Compd. 556, 20 (2013).

    Article  CAS  Google Scholar 

  10. H.G. Zhang, J. Zhou, Y.L. Wang, L.T. Li, Z.X. Yue, and Z.L. Gui: The effect of Zn ion substitution on electromagnetic properties of low-temperature fired Z-type hexaferrite. Ceram. Int. 28, 917 (2002).

    Article  CAS  Google Scholar 

  11. M.H. Kim, J.B. Lim, J.C. Kim, S. Nahm, J.H. Paik, J.H. Kim, and K.S. Park: Synthesis of BaCu(B2O5) ceramics and their effect on the sintering temperature and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3Ceramics. J. Am. Ceram. Soc. 89, 3124 (2006).

    Article  CAS  Google Scholar 

  12. J.B. Lim, K.H. Cho, S. Nahm, J.H. Paik, and J.H. Kim: Effect of BaCu(B2O5) on the sintering temperature and microwave dielectric properties of BaO–Ln2O3–TiO2 (Ln=Sm, Nd) ceramics. Mater. Res. Bull. 41, 1868 (2006).

    Article  CAS  Google Scholar 

  13. H.F. Zhou, X.B. Liu, X.L. Chen, L. Fang, and H. Wang: Microwave dielectric properties and compatibility with silver of low-fired Ba2Ti3Nb4O18 ceramics with BaCu(B2O5) addition. J. Mater. Sci.: Mater. Electron. 23, 238 (2011).

    Google Scholar 

  14. X.L. Chen, H.F. Zhou, L. Fang, X.B. Liu, and Y.L. Wang: Microwave dielectric properties and its compatibility with silver electrode of Li2MgTi3O8 ceramics. J. Alloys Compd. 509, 5829 (2011).

    Article  CAS  Google Scholar 

  15. C. Koops: On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121 (1951).

    Article  CAS  Google Scholar 

  16. L.R. Naik and B.K. Bammannavar: The Ferroelectric Dependent Magnetoelectricity in Composites, Ferroelectrics — Characterization and Modeling, M. Lallart ed. (In Tech, Rijeka, 2011).

  17. S.M. Khetrea, H.V. Jadhav, P.N. Jagadale, S.R. Kulal, and S.R. Bamane: Studies on electrical and dielectric properties of LaFeO3. Adv. Appl. Sci. Res. 2, 503 (2011).

    Google Scholar 

  18. Y. Köseoğlu, M. Bay, M. Tan, A. Baykal, H. Sözeri, R. Topkaya, and N. Akdoğan: Magnetic and dielectric properties of Mn0.2Ni0.8Fe2O4 nanoparticles synthesized by PEG-assisted hydrothermal method. J. Nanopart. Res. 13, 2235 (2010).

    Article  Google Scholar 

  19. H.B. Yang, H. Wang, F. Xiang, and X. Yao: Microstructure and electromagnetic properties of SrTiO3/Ni0.8Zn0.2Fe2O4 composites by hybrid process. J. Am. Ceram. Soc. 92, 2005 (2009).

    Article  CAS  Google Scholar 

  20. Z.L. Zheng, H.W. Zhang, J.Q. Xiao, and F.M. Bai: Low loss NiZn/Co2Z composite ferrite with almost equal values of permeability and permittivity for antenna applications. IEEE Trans. Magn. 49, 4214 (2013).

    Article  CAS  Google Scholar 

  21. C.H. Mu, Y.L. Liu, H.W. Zhang, Y.Q. Song, Q.Y. Wen, and J. Shen: Influence of MgTiO3 on the magnetic and dielectric properties of Ba3Co2Fe24O41hexaferrite. J. Appl. Phys. 107, 09A511 (2010).

    Article  Google Scholar 

  22. H.G. Zhang, J. Zhou, Y.L. Wang, L.T. Li, Z.X. Yue, and Z.L. Gui: Microstructure and magnetic characteristics of low-temperature-fired modified Z-type hexaferrite with Bi2O3 additive. IEEE Trans. Magn. 38, 1797 (2002).

    Article  CAS  Google Scholar 

  23. T. Nakamura, T. Tsutaoka, and K. Hatakeyama: Frequency dispersion of permeability in ferrite composite materials. J. Magn. Magn. Mater. 138, 319 (1994).

    Article  CAS  Google Scholar 

  24. T. Nakamura: Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra. J. Magn. Magn. Mater. 168, 285 (1997).

    Article  CAS  Google Scholar 

  25. Q. Xia, H. Su, G. Shen, T. Pan, T. Zhang, H. Zhang, and X. Tang: Investigation of low loss Z-type hexaferrites for antenna applications. J. Appl. Phys. 111, 063921 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by National Science Foundation of China (61471290) and the SRFDP-RGC Joint Research Scheme 2013/14 (20130201140002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, P., He, L. & Wang, H. Effect of BaCu(B2O5) additions on the sintering behaviors and dielectric-magnetic properties of Co2Z hexaferrite. Journal of Materials Research 30, 2747–2752 (2015). https://doi.org/10.1557/jmr.2015.235

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.235

Navigation