Abstract
We present the results of a mixed-space approach, based on first-principles calculations, to investigate phonon dispersions and thermal properties of Mg2Si and Mg2Sn, including the bulk modulus, Grüneisen parameter, heat capacity, and Debye temperature. It is shown that good agreements are obtained between the calculated results and available experimental data for both phonon dispersions and thermal properties. The phonon dispersions are accurately calculated compared with experimental data due to the high-quality description of LO–TO splitting and transverse acoustic branches along the Γ- K- X symmetry line. We also calculate the heat capacity CP and Debye temperature of Mg2Si1− xSnx alloys (x = 0.375, 0.5, 0.625, 0.875). The CP values at high temperature range from 0.5 to 0.7 J/g/K and ΘD values at room temperature from 332 to 384 K as the Sn content decreases from 0.875 to 0.375.
Similar content being viewed by others
References
H.J. Goldsmid: Applications of Thermoelectricity (Methuen Monograph, London, 1960); p. 93.
H.J. Goldsmid: Thermoelectric Refrigeration (Plenum Press, New York, 1964); p. 6.
Y.Z. Pei, X.Y. Shi, A.D. LaLonde, H. Wang, L.D. Chen, and G.J. Snyder: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66 (2011).
Y.Z. Pei, H. Wang, and G.J. Snyder: Band engineering of thermoelectric materials. Adv. Mater. 24, 6125 (2012).
J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554 (2008).
G.D. Mahan and J.O. Sofo: The best thermoelectric. Proc. Natl. Acad. Sci. U. S. A. 93, 7436 (1996).
C.M. Jaworski, B. Wiendlocha, V. Jovovic, and J.P. Heremans: Combining alloy scattering of phonons and resonant electronic levels to reach a high thermoelectric figure of merit in PbTeSe and PbTeS alloys. Energy Environ. Sci. 4, 4155 (2011).
V.K. Zaitsev, M.I. Fedorov, I.S. Eremin, and E.A. Gurieva: Thermoelectric Handbook, Macro to Nano, Vols. 29 and 31 (CRC Taylor & Francis, Boca Raton, 2006).
V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov: Highly effective Mg2Si1−xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006).
W. Liu, X.F. Tang, H. Li, J. Sharp, X.Y. Zhou, and C. Uher: Optimized thermoelectric properties of Sb-doped Mg2(1+z)Si0.5−ySn0.5Sby through adjustment of the Mg content. Chem. Mater. 23, 5256 (2011).
W. Liu, X.J. Tan, K. Yin, H.J. Liu, X.F. Tang, J. Shi, Q.J. Zhang, and C. Uher: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (2012).
Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, and T.M. Tritt: High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials. Appl. Phys. Lett. 93, 102109 (2008).
Z.L. Du, T.J. Zhu, Y. Chen, J. He, H.L. Gao, G.Y. Jiang, T.M. Tritt, and X.B. Zhao: Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions. J. Mater. Chem. 22, 6838 (2012).
H.L. Gao, T.J. Zhu, X.X. Liu, L.X. Chen, and X.B. Zhao: Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Si0.5Sn0.5 solid solutions for energy harvesting. J. Mater. Chem. 21, 5933 (2011).
X.H. Liu, T.J. Zhu, H. Wang, L.P. Hu, H.H. Xie, G.Y. Jiang, G.J. Snyder, and X.B. Zhao: Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence. Adv. Energy Mater. 3, 1238 (2013).
G.Y. Jiang, J. He, T.J. Zhu, C.G. Fu, X.H. Liu, L.P. Hu, and X.B. Zhao: High performance Mg2(Si,Sn) solid solutions: A point defect chemistry approach to enhancing thermoelectric properties. Adv. Funct. Mater. 24, 3776 (2014).
P. Baranek, J. Schamps, and I. Noiret: Ab initio studies of electronic structure, phonon modes, and elastic properties of Mg2Si. J. Phys. Chem. B 101, 9147 (1997).
P. Boulet, M.J. Verstraete, J.P. Crocombette, M. Briki, and M.C. Record: Electronic properties of the Mg2Si thermoelectric material investigated by linear-response density-functional theory. Comput. Mater. Sci. 50, 847 (2011).
J-i. Tani and H. Kido: First-principles and experimental studies of impurity doping into Mg2Si. Intermetallics 16, 418 (2008).
X.J. Tan, W. Liu, H.J. Liu, J. Shi, X.F. Tang, and C. Uher: Multiscale calculations of thermoelectric properties of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. B 85, 205212 (2012).
P. Baranek and J. Schamps: Influence of electronic correlation on structural, dynamic, and elastic properties of Mg2Si. J. Phys. Chem. B 103, 2601 (1999).
J-i. Tani and H. Kido: Lattice dynamics of Mg2Si and Mg2Ge compounds from first-principles calculations. Comput. Mater. Sci. 42, 531 (2008).
S. Duman, H.M. Tutuncu, S. Bagci, and G.P. Srivastava: Ab initio determination of structural and dynamical properties of Mg2Sn. In Six International Conference of the Balkan Physical Union, Vol. 899, S.A. Cetin and I. Hikmet eds. (American Institute of Physics, New York, NY, 2007); p. 247.
S. Ganeshan, S.L. Shang, Y. Wang, and Z.K. Liu: Temperature dependent elastic coefficients of Mg2X (X = Si, Ge, Sn, Pb) compounds from first-principles calculations. J. Alloys Compd. 498, 191 (2010).
P. Pandit and S.P. Sanyal: First principles study of electronic, elastic and lattice dynamical properties of Mg2X (X= Si, Ge and Sn) compounds. Indian J. Pure Appl. Phys. 49, 692 (2011).
W. Li, L. Lindsay, D.A. Broido, D.A. Stewart, and N. Mingo: Thermal conductivity of bulk and nanowire Mg2SixSn1−x alloys from first principles. Phys. Rev. B 86, 174307 (2012).
H.F. Wang, W.G. Chu, and H. Jin: Theoretical study on thermoelectric properties of Mg2Si and comparison to experiments. Comput. Mater. Sci. 60, 224 (2012).
H.F. Wang, H. Jin, W.G. Chu, and Y.J. Guo: Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method. J. Alloys Compd. 499, 68 (2010).
Y. Wang, S.L. Shang, Z.K. Liu, and L.Q. Chen: Mixed-space approach for calculation of vibration-induced dipole-dipole interactions. Phys. Rev. B 85, 224303 (2012).
Y. Wang, L.Q. Chen, and Z.K. Liu: YPHON: A package for calculating phonons of polar materials. Comput. Phys. Commun. 185, 2950 (2014).
G. Kresse and J. Hafner: Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 47, 558 (1993).
G. Kresse and J. Furthmuller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
J.P. Perdew and A. Zunger: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981).
P.E. Blochl, O. Jepsen, and O.K. Andersen: Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994).
M. Gajdos, K. Hummer, G. Kresse, J. Furthmuller, and F. Bechstedt: Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006).
W. Cochran and R.A. Cowley: Dielectric constants and lattice vibrations. J. Phys. Chem. Solids 23, 447 (1962).
S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).
Y. Wang, Z.K. Liu, and L.Q. Chen: Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations. Acta Mater. 52, 2665 (2004).
S-L. Shang, Y. Wang, D. Kim, and Z-K. Liu: First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al. Comput. Mater. Sci. 47, 1040 (2010).
Y. Wang, J.J. Wang, W.Y. Wang, Z.G. Mei, S.L. Shang, L.Q. Chen, and Z.K. Liu: A mixed-space approach to first-principles calculations of phonon frequencies for polar materials. J. Phys.: Condens. Matter 22, 202201 (2010).
N.D. Mermin and N.W. Achcroft: Solid State Physics (Harcourt College Publishers, Philadelphia, 1976); p. 457.
M.T. Hutchings, T.W.D. Farley, M.A. Hackett, W. Hayes, S. Hull, and U. Steigenberger: Neutron-scattering investigation of lattice-dynamics and thermally induced disorder in the antifluorite Mg2Si. Solid State Ionics 28, 1208 (1988).
C.J. Buchenauer and M. Cardona: Raman scattering in Mg2Si, Mg2Ge and Mg2Sn. Phys. Rev. B 3, 2504 (1971).
D. McWilliams and D.W. Lynch: Infrared reflectivities of magnesium silicide, germanide, and stannide. Phys. Rev. 130, 2248 (1963).
R.J. Kearney, T.G. Worlton, and R.E. Schmunk: Lattice dynamics of magnesium stannide at room temperature. J. Phys. Chem. Solids 31, 1085 (1970).
R. Geick, W.J. Hakel, and C.H. Perry: Temperature dependence of far-infrared reflectivity of magnesium stannide. Phys. Rev. 148, 824 (1966).
D. Bessas, R.E. Simon, K. Friese, M. Koza, and R.P. Hermann: Lattice dynamics in intermetallic Mg2Ge and Mg2Si. J. Phys.: Condens. Matter 26, 485401 (2014).
B.C. Gerstein, F.J. Jelinek, M. Habensch, W.D. Shickell, J.R. Mullaly, and P.L. Chung: Thermal study of group 2–4 semiconductors-lattice heat capacities and free energies of formation. Heat capacity of Mg2Si from 15 degrees–300 degrees K. J. Chem. Phys. 47, 2109 (1967).
F.J. Jelinek, W.D. Shickell, and B.C. Gerstein: Thermal study of group 2–4 semiconductors.2.Heat capacity of Mg2Sn in range 5–300 degrees K. J. Phys. Chem. Solids 28, 267 (1967).
W.B. Whitten, P.L. Chung, and G.C. Danielson: Elastic constants and lattice vibration frequencies of Mg2Si. J. Phys. Chem. Solids 26, 49 (1965).
Y. Wang, J.E. Saal, P. Wu, J. Wang, S. Shang, Z-K. Liu, and L-Q. Chen: First-principles lattice dynamics and heat capacity of BiFeO3. Acta Mater. 59, 4229 (2011).
O. Delaire, A.F. May, M.A. McGuire, W.D. Porter, M.S. Lucas, M.B. Stone, D.L. Abernathy, V.A. Ravi, S.A. Firdosy, and G.J. Snyder: Phonon density of states and heat capacity of La3−xTe4. Phys. Rev. B 80, 184302 (2009).
L.B.o.O. Madelung ed.: Numerical Data and Functional Relationships in Science and Technology, GroupIII, Vol. 17e, Springer-Verlag, Berlin.
ACKNOWLEDGMENTS
We greatly appreciate low temperature measurement of CP by Mr. Tiansong Zhang and Prof. Xun Shi at Shanghai Institute of Ceramics, Chinese Academy of Science. Most of the research presented in this study was performed during Ms. X.H. Liu’s visit to Penn State with her visit supported by the School of Materials Science and Engineering at Zhejiang University through an International Student Exchange Program. The work was also supported by the National Basic Research Program of China (2013CB632503), the National Natural Science Foundation of China (51171171 and 51271165), the Program for New Century Excellent Talents in University (NCET-12-0495), and the US DOE Basic Sciences under Grant No. DOE DE-FG02-07ER46417 (Y.W. and L. Chen).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Liu, X., Wang, Y., Sofo, J.O. et al. First-principles studies of lattice dynamics and thermal properties of Mg2Si1− xSnx. Journal of Materials Research 30, 2578–2584 (2015). https://doi.org/10.1557/jmr.2015.229
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2015.229