Abstract
We theoretically investigated the structural and thermoelectric properties of Mg2Si with Al and Sb (Na and B) as n-type (p-type) impurities. Supercell calculations involving relaxation of the atomic positions using an ab initio pseudo-potential method were performed. The formation energies, Eform, i, for the i = Mg, Si, and 4b sites, and consequently, the energetically preferred sites occupied by the impurities, were discussed. The calculated Eform, i were used to estimate the impurity-site occupancy probabilities, pi(T), based on the canonical distribution in the equilibrium state, i.e., pi(T) ∝ exp(− Eform, i/ kBT) (Boltzmann constant: kB, temperature: T), and the resultant effects on the carrier concentration. Next, an all-electron full-potential linearized augmented-plane-wave calculation was performed based on the optimized structures, and the temperature dependence of the thermoelectromotive force (the Seebeck coefficient) was evaluated using the Boltzmann transport equation. The calculated and experimental results for n-type doped systems were compared.
Similar content being viewed by others
References
Y. Oto, T. Iida, T. Sakamoto, R. Miyahara, A. Natsui, K. Nishio, Y. Kogo, N. Hirayama, and Y. Takanashi: Thermoelectric properties and durability at elevated temperatures of impurity doped n-type Mg2Si. Phys. Status Solidi C 10, 1857 (2013).
V.E. Boriseneko: Semiconducting Silicide (Springer, Berlin, 2000); p. 285.
R.G. Morris, R.D. Redin, and G.C. Danielson: Semiconducting properties of Mg2Si single crystals. Phys. Rev. 109, 1909 (1958).
M. Akasaka, T. Iida, T. Nemoto, J. Soga, J. Sato, K. Makino, M. Fukano, and Y. Takanashi: Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics. J. Cryst. Growth 304, 196 (2007).
A. Kato, T. Yagi, and T.N. Fukusako: First-principles studies of intrinsic point defects in magnesium silicide. J. Phys.: Condens. Matter 21, 205801 (2009).
P. Jund, R. Viennois, C. Colinet, G. Hug, M. Fèvre, and J-C. T´edenac: Lattice stability and formation energies of intrinsic defects in Mg2Si and Mg2Ge via first principles simulations. J. Phys.: Condens. Matter 25, 035403 (2013).
T. Sakamoto, T. Iida, A. Matsumoto, Y. Honda, T. Nemoto, J. Sato, T. Nakajima, H. Taguchi, and Y. Takanashi: Thermoelectric characteristics of as commercialized Mg2Si source doped with Al, Bi, Ag, and Cu. J. Electron. Mater. 39, 1708 (2010).
V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Yu. Samunin, and M.V. Vedernikov: Highly effective Mg2Si1− xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006).
K. Mars, H. Ihou-Mouko, G. Pont, J. Tobola, and H. Scherrer: Thermoelectric properties and electronic structure of Bi- and Ag-doped Mg2Si1− xGex compounds. J. Electron. Mater. 38, 1360 (2009).
H. Ihou-Moukoa, C. Mercier, J. Tobola, G. Pont, and H. Scherrer: Thermoelectric properties and electronic structure of p-type Mg2Si and Mg2Si0.6Ge0.4 compounds doped with Ga. J. Alloys Compd. 509, 6503 (2011).
N. Hirayama, T. Iida, H. Funashima, S. Morioka, M. Sakamoto, K. Nishio, Y. Kogo, Y. Takanashi, and N. Hamada: Theoretical analysis of structure and formation energy of impurity-doped Mg2Si: Comparison of first-principles codes for material properties. Jpn. J. Appl. Phys. Special Issue: Semiconducting Silicides Green Technology 54, 07JC05 (2015).
P. Zwolenski, J. Tobola, and S. Kaprzyk: A theoretical search for efficient dopants in Mg2X (X = Si, Ge, Sn) thermoelectric materials. J. Electron. Mater. 40, 889 (2011).
J. Bourgeois, J. Tobola, B. Wiendlocha, L. Chaput, P. Zwolenski, D. Berthebaud, F. Gascoin, Q. Recour, and H. Scherrer: Study of electron, phonon, and crystal stability versus thermoelectric properties in Mg2X (X = Si, Sn) compounds and their alloys. Funct. Mater. Lett. 6, 1340005 (2013).
W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1− xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (2012).
J. Tobola, S. Kaprzyk, and H. Scherrer: Mg-vacancy-induced semiconducting properties in Mg2Si1− xSbx from electronic structure calculations. J. Electron. Mater. 39, 2064 (2010).
K. Kutorasinski, B. Wiendlocha, J. Tobola, and S. Kaprzyk: Importance of relativistic effects in electronic structure and thermopower calculations for Mg2Si, Mg2Ge, and Mg2Sn. Phys. Rev. B 89, 115205 (2014).
P. Zwolenski, J. Tobola, and S. Kaprzyk: KKR–CPA study of electronic structure and relative stability of Mg2X (X = Si, Ge, Sn) thermoelectrics containing point defects. J. Alloys Compd. 627, 85 (2015).
http://www.quantum-espresso.org (accessed January 1, 2015).
N. Hirayama, T. Iida, H. Funashima, S. Morioka, M. Sakamoto, K. Nishio, Y. Kogo, Y. Takanashi, and N. Hamada: First-principles study on structural and thermoelectric properties of Al- and Sb-doped Mg2Si. J. Electron. Mater. 44, 1656 (2015).
L.V. McCarty, J.S. Kasper, F.H. Horn, B.F. Decker, and A.E. Newkirk: A new crystalline modification of boron. J. Am. Chem. Soc. 80, 2592 (1958).
H. Kasai, H. Akai, and H. Yoshida: Introduction to Computational Materials Design (Osaka University Press, Osaka, 2005). (In Japanese).
S.H. Vosko, L. Wilk, and M. Nusair: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 58, 1200 (1980).
G.S. Painter: Improved correlation corrections to the local-spin-density approximation. Phys. Rev. B 24, 4264 (1981).
O.K. Andersen: Linear methods in band theory. Phys. Rev. B 12, 3060 (1975).
T. Takeda and J. Kubler: Linear augmented plane wave method for self-consistent calculations. J. Phys. F: Met. Phys. 9, 661 (1979).
N. Hirayama, T. Iida, K. Nishio, Y. Kogo, Y. Takanashi, and N. Hamada: First-principles calculation of Seebeck coefficient in impurity doped Mg2Si: Supercell versus rigid band approach. (In preparation).
S. Fiameni, S. Battiston, S. Boldrini, A. Famengo, F. Agresti, S. Barison, and M. Fabrizio: Synthesis and characterization of Bi-doped Mg2Si thermoelectric materials. J. Solid State Chem. 193, 142 (2012).
W. Klemm and H. Westlinning: Untersuchungen über die Verbindungen des Magnesiums mit den Elementen der IV b-Gruppe. Z. Anorg. Allg. Chem. 245, 365 (1941).
E.A. Owen and G.D. Preston: The atomic structure of two intermetallic compounds. Proc. Phys. Soc., London 36, 341 (1924).
R.D. Shannon and C.T. Prewitt: Effective ionic radii in oxides and fluorides. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25, 925 (1969).
http://kkr.phys.sci.osaka-u.ac.jp (accessed January 1, 2015).
P. Koenig, D.W. Lynch, and G.C. Danielson: Infrared absorption in magnesium silicide and magnesium germanide. J. Phys. Chem. Solids 20, 122 (1961).
M.S. Hybertsen and S. Louie: Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986).
F. Gygi and A. Baldereschi: Quasiparticle energies in semiconductors: Self-energy correction to the local-density approximation. Phys. Rev. Lett. 62, 2160 (1989).
ACKNOWLEDGMENTS
The authors are grateful to Dr. H. Funashima and Prof. M. Geshi for their professional guidance and insightful comments. This research was partially supported by JSPS KAKENHI Grant No. (26820099).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hirayama, N., Iida, T., Morioka, S. et al. First-principles investigation of structural, electronic, and thermoelectric properties of n- and p-type Mg2Si. Journal of Materials Research 30, 2564–2577 (2015). https://doi.org/10.1557/jmr.2015.206
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2015.206