Skip to main content
Log in

First-principles investigation of structural, electronic, and thermoelectric properties of n- and p-type Mg2Si

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We theoretically investigated the structural and thermoelectric properties of Mg2Si with Al and Sb (Na and B) as n-type (p-type) impurities. Supercell calculations involving relaxation of the atomic positions using an ab initio pseudo-potential method were performed. The formation energies, Eform, i, for the i = Mg, Si, and 4b sites, and consequently, the energetically preferred sites occupied by the impurities, were discussed. The calculated Eform, i were used to estimate the impurity-site occupancy probabilities, pi(T), based on the canonical distribution in the equilibrium state, i.e., pi(T) ∝ exp(− Eform, i/ kBT) (Boltzmann constant: kB, temperature: T), and the resultant effects on the carrier concentration. Next, an all-electron full-potential linearized augmented-plane-wave calculation was performed based on the optimized structures, and the temperature dependence of the thermoelectromotive force (the Seebeck coefficient) was evaluated using the Boltzmann transport equation. The calculated and experimental results for n-type doped systems were compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. Y. Oto, T. Iida, T. Sakamoto, R. Miyahara, A. Natsui, K. Nishio, Y. Kogo, N. Hirayama, and Y. Takanashi: Thermoelectric properties and durability at elevated temperatures of impurity doped n-type Mg2Si. Phys. Status Solidi C 10, 1857 (2013).

    Article  CAS  Google Scholar 

  2. V.E. Boriseneko: Semiconducting Silicide (Springer, Berlin, 2000); p. 285.

    Book  Google Scholar 

  3. R.G. Morris, R.D. Redin, and G.C. Danielson: Semiconducting properties of Mg2Si single crystals. Phys. Rev. 109, 1909 (1958).

    Article  CAS  Google Scholar 

  4. M. Akasaka, T. Iida, T. Nemoto, J. Soga, J. Sato, K. Makino, M. Fukano, and Y. Takanashi: Non-wetting crystal growth of Mg2Si by vertical Bridgman method and thermoelectric characteristics. J. Cryst. Growth 304, 196 (2007).

    Article  CAS  Google Scholar 

  5. A. Kato, T. Yagi, and T.N. Fukusako: First-principles studies of intrinsic point defects in magnesium silicide. J. Phys.: Condens. Matter 21, 205801 (2009).

    Google Scholar 

  6. P. Jund, R. Viennois, C. Colinet, G. Hug, M. Fèvre, and J-C. T´edenac: Lattice stability and formation energies of intrinsic defects in Mg2Si and Mg2Ge via first principles simulations. J. Phys.: Condens. Matter 25, 035403 (2013).

    Google Scholar 

  7. T. Sakamoto, T. Iida, A. Matsumoto, Y. Honda, T. Nemoto, J. Sato, T. Nakajima, H. Taguchi, and Y. Takanashi: Thermoelectric characteristics of as commercialized Mg2Si source doped with Al, Bi, Ag, and Cu. J. Electron. Mater. 39, 1708 (2010).

    Article  CAS  Google Scholar 

  8. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Yu. Samunin, and M.V. Vedernikov: Highly effective Mg2Si1− xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  9. K. Mars, H. Ihou-Mouko, G. Pont, J. Tobola, and H. Scherrer: Thermoelectric properties and electronic structure of Bi- and Ag-doped Mg2Si1− xGex compounds. J. Electron. Mater. 38, 1360 (2009).

    Article  CAS  Google Scholar 

  10. H. Ihou-Moukoa, C. Mercier, J. Tobola, G. Pont, and H. Scherrer: Thermoelectric properties and electronic structure of p-type Mg2Si and Mg2Si0.6Ge0.4 compounds doped with Ga. J. Alloys Compd. 509, 6503 (2011).

    Article  Google Scholar 

  11. N. Hirayama, T. Iida, H. Funashima, S. Morioka, M. Sakamoto, K. Nishio, Y. Kogo, Y. Takanashi, and N. Hamada: Theoretical analysis of structure and formation energy of impurity-doped Mg2Si: Comparison of first-principles codes for material properties. Jpn. J. Appl. Phys. Special Issue: Semiconducting Silicides Green Technology 54, 07JC05 (2015).

    Article  Google Scholar 

  12. P. Zwolenski, J. Tobola, and S. Kaprzyk: A theoretical search for efficient dopants in Mg2X (X = Si, Ge, Sn) thermoelectric materials. J. Electron. Mater. 40, 889 (2011).

    Article  CAS  Google Scholar 

  13. J. Bourgeois, J. Tobola, B. Wiendlocha, L. Chaput, P. Zwolenski, D. Berthebaud, F. Gascoin, Q. Recour, and H. Scherrer: Study of electron, phonon, and crystal stability versus thermoelectric properties in Mg2X (X = Si, Sn) compounds and their alloys. Funct. Mater. Lett. 6, 1340005 (2013).

    Article  Google Scholar 

  14. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1− xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (2012).

    Article  Google Scholar 

  15. J. Tobola, S. Kaprzyk, and H. Scherrer: Mg-vacancy-induced semiconducting properties in Mg2Si1− xSbx from electronic structure calculations. J. Electron. Mater. 39, 2064 (2010).

    Article  CAS  Google Scholar 

  16. K. Kutorasinski, B. Wiendlocha, J. Tobola, and S. Kaprzyk: Importance of relativistic effects in electronic structure and thermopower calculations for Mg2Si, Mg2Ge, and Mg2Sn. Phys. Rev. B 89, 115205 (2014).

    Article  Google Scholar 

  17. P. Zwolenski, J. Tobola, and S. Kaprzyk: KKR–CPA study of electronic structure and relative stability of Mg2X (X = Si, Ge, Sn) thermoelectrics containing point defects. J. Alloys Compd. 627, 85 (2015).

    Article  CAS  Google Scholar 

  18. http://www.quantum-espresso.org (accessed January 1, 2015).

  19. N. Hirayama, T. Iida, H. Funashima, S. Morioka, M. Sakamoto, K. Nishio, Y. Kogo, Y. Takanashi, and N. Hamada: First-principles study on structural and thermoelectric properties of Al- and Sb-doped Mg2Si. J. Electron. Mater. 44, 1656 (2015).

    Article  CAS  Google Scholar 

  20. L.V. McCarty, J.S. Kasper, F.H. Horn, B.F. Decker, and A.E. Newkirk: A new crystalline modification of boron. J. Am. Chem. Soc. 80, 2592 (1958).

    Article  CAS  Google Scholar 

  21. H. Kasai, H. Akai, and H. Yoshida: Introduction to Computational Materials Design (Osaka University Press, Osaka, 2005). (In Japanese).

    Google Scholar 

  22. S.H. Vosko, L. Wilk, and M. Nusair: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 58, 1200 (1980).

    Article  CAS  Google Scholar 

  23. G.S. Painter: Improved correlation corrections to the local-spin-density approximation. Phys. Rev. B 24, 4264 (1981).

    Article  CAS  Google Scholar 

  24. O.K. Andersen: Linear methods in band theory. Phys. Rev. B 12, 3060 (1975).

    Article  CAS  Google Scholar 

  25. T. Takeda and J. Kubler: Linear augmented plane wave method for self-consistent calculations. J. Phys. F: Met. Phys. 9, 661 (1979).

    Article  CAS  Google Scholar 

  26. N. Hirayama, T. Iida, K. Nishio, Y. Kogo, Y. Takanashi, and N. Hamada: First-principles calculation of Seebeck coefficient in impurity doped Mg2Si: Supercell versus rigid band approach. (In preparation).

  27. S. Fiameni, S. Battiston, S. Boldrini, A. Famengo, F. Agresti, S. Barison, and M. Fabrizio: Synthesis and characterization of Bi-doped Mg2Si thermoelectric materials. J. Solid State Chem. 193, 142 (2012).

    Article  CAS  Google Scholar 

  28. W. Klemm and H. Westlinning: Untersuchungen über die Verbindungen des Magnesiums mit den Elementen der IV b-Gruppe. Z. Anorg. Allg. Chem. 245, 365 (1941).

    Article  CAS  Google Scholar 

  29. E.A. Owen and G.D. Preston: The atomic structure of two intermetallic compounds. Proc. Phys. Soc., London 36, 341 (1924).

    Article  CAS  Google Scholar 

  30. R.D. Shannon and C.T. Prewitt: Effective ionic radii in oxides and fluorides. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25, 925 (1969).

    Article  CAS  Google Scholar 

  31. http://kkr.phys.sci.osaka-u.ac.jp (accessed January 1, 2015).

  32. P. Koenig, D.W. Lynch, and G.C. Danielson: Infrared absorption in magnesium silicide and magnesium germanide. J. Phys. Chem. Solids 20, 122 (1961).

    Article  CAS  Google Scholar 

  33. M.S. Hybertsen and S. Louie: Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390 (1986).

    Article  CAS  Google Scholar 

  34. F. Gygi and A. Baldereschi: Quasiparticle energies in semiconductors: Self-energy correction to the local-density approximation. Phys. Rev. Lett. 62, 2160 (1989).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. H. Funashima and Prof. M. Geshi for their professional guidance and insightful comments. This research was partially supported by JSPS KAKENHI Grant No. (26820099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Hirayama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirayama, N., Iida, T., Morioka, S. et al. First-principles investigation of structural, electronic, and thermoelectric properties of n- and p-type Mg2Si. Journal of Materials Research 30, 2564–2577 (2015). https://doi.org/10.1557/jmr.2015.206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.206

Navigation