Skip to main content
Log in

Identifying the stress–strain curve of materials by microimpact testing. Application on pure copper, pure iron, and aluminum alloy 6061-T651

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanical response of materials under repeated impact loading is of primary importance to model different types of surface mechanical treatments, such as shot peening. A reverse identification method of stress–strain curves using repeated impact has been developed by Kermouche et al. [Kermouche et al., Mater. Sci. Eng., A 569, 71–77 (2013)] and later improved by Al Baida et al. [Al Baida et al., Mech. Mater. 86, 11–20 (2015)]. This study deals with the experimental validation of this method on three materials: a home-made pure iron, a commercially pure copper, and an industrial aluminum alloy. An approximate method derived from cone indentation theory to check the reverse method reliability. Balls of different sizes have been used to cover a wide enough range of strain. The results are also compared with macroscopic compression and traction tests. The effect of the strain rate on the stress–strain curve is discussed. The conclusion section highlights the rapidity and the ease of use of the reverse identification method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. V.O. Abramov, O.V. Abramov, F. Sommer, O.M. Gradov, and O.M. Smirnov: Surface hardening of metals by ultrasonically accelerated small metal balls. Ultrasonics 36, 1013–1019 (1998).

    Article  CAS  Google Scholar 

  2. H.Y. Miao, D. Demers, S. Larose, C. Perron, and M. Lévesque: Experimental study of shot peening and stress peen forming. J. Mater. Process. Technol. 210, 2089–2102 (2010).

    Article  CAS  Google Scholar 

  3. K. Murugaratnam, S. Utili, and N. Petrinic: A combined DEM–FEM numerical method for shot peening parameter optimization. Adv. Eng. Softw. 79, 13–26 (2015).

    Article  Google Scholar 

  4. G.I. Mylonas and G. Labeas: Numerical modelling of shot peening process and corresponding products: Residual stress, surface roughness and cold work prediction. Surf. Coat. Technol. 205, 4480–4494 (2011).

    Article  CAS  Google Scholar 

  5. S.P.F.C. Jaspers and J.H. Dautzenberg: Material behaviour in conditions similar to metal cutting: Flow stress in the primary shear zone. J. Mater. Process. Technol. 122, 322–330 (2002).

    Article  CAS  Google Scholar 

  6. M. Beghini, L. Bertini, and V. Fontanari: Evaluation of the stress–strain curve of metallic materials by spherical indentation. Int. J. Solids Struct. 43, 2441–2459 (2006).

    Article  CAS  Google Scholar 

  7. J-M. Collin, G. Mauvoisin, O. Bartier, R. El Abdi, and P. Pilvin: Experimental evaluation of the stress–strain curve by continuous indentation using different indenter shapes. Mater. Sci. Eng., A 501, 140–145 (2009).

    Article  Google Scholar 

  8. J-M. Collin, G. Mauvoisin, P. Pilvin, and R. El Abdi: Use of spherical indentation data changes to materials characterization based on a new multiple cyclic loading protocol. Mater. Sci. Eng., A 488, 608–622 (2008).

    Article  Google Scholar 

  9. G. Kermouche, F. Grange, and C. Langlade: Local identification of the stress–strain curves of metals at a high strain rate using repeated micro-impact testing. Mater. Sci. Eng., A 569, 71–77 (2013).

    Article  CAS  Google Scholar 

  10. S. Lamri, C. Langlade, and G. Kermouche: Damage phenomena of thin hard coatings submitted to repeated impacts: Influence of the substrate and film properties. Mater. Sci. Eng., A 560, 296–305 (2013).

    Article  CAS  Google Scholar 

  11. M. Dao, K. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899–3918 (2001).

    Article  CAS  Google Scholar 

  12. Y. Huang, X. Liu, Y. Zhou, Z. Ma, and C. Lu: Mathematical analysis on the uniqueness of reverse algorithm for measuring elastic-plastic properties by sharp indentation. J. Mater. Sci. Technol. 27, 577–584 (2011).

    Article  Google Scholar 

  13. H. Al Baida, G. Kermouche, and C. Langlade: Development of an improved method for identifying material stress–strain curve using repeated micro-impact testing. Mech. Mater. 86, 11–20 (2015).

    Article  Google Scholar 

  14. D. Systems: Abaqus Explicit (2011).

    Google Scholar 

  15. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).

    Book  Google Scholar 

  16. R. Hill, B. Storakers, and A.B. Zdunek: A theoretical study of the Brinell hardness test. Proc. R. Soc. London, Ser. A 423, 301–330 (1989).

    Article  CAS  Google Scholar 

  17. D. Tabor: The Hardness of Metals (Oxford University Press, Oxford, UK, 2000).

    Google Scholar 

  18. G. Kermouche, J-L. Loubet, and J-M. Bergheau: An approximate solution to the problem of cone or wedge indentation of elastoplastic solids. C. R. Méc. 333, 389–395 (2005).

    Article  Google Scholar 

  19. C-H. Mok: The dependence of yield stress on strain rate as determined from ball-indentation tests. Exp. Mech. 6, 87–92 (1966).

    Article  Google Scholar 

  20. G.R. Johnson and W.H. Cook: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985).

    Article  Google Scholar 

  21. M.A. Meyers: Dynamic Behavior of Materials (John Wiley & Sons, Hoboken, NJ, 1994).

    Book  Google Scholar 

  22. C. Peng, Y. Zhong, Y. Lu, S. Narayanan, T. Zhu, and J. Lou: Strain rate dependent mechanical properties in single crystal nickel nanowires. Appl. Phys. Lett. 102, 083102 (2013).

    Article  Google Scholar 

  23. V. Lacaille, G. Kermouche, D-Y.T. Spinel, E. Feulvarch, C. Morel, and J-M. Bergheau: Modeling nitriding enhancement resulting from the NanoPeening treatment of a pure iron. IOP Conf. Ser. Mater. Sci. Eng. 63, 012124 (2014).

    Article  Google Scholar 

  24. D. Ostwaldt, J.R. Klepaczko, and P. Klimanek: Compression tests of polycrystalline α-iron up to high strains over a large range of strain rates. J. Phys. IV 07, 385–390 (1997).

    Google Scholar 

  25. H. Al Baida, C. Langlade, G. Kermouche, and R. Ambriz: Identification du comportement mécanique des matériaux à l’aide d’essais de micro-impact répétés. Matér. Tech. 102, 604 (2014).

    Article  Google Scholar 

  26. R.R. Ambriz, C. Froustey, and G. Mesmacque: Determination of the tensile behavior at middle strain rate of AA6061-T6 aluminum alloy welds. Int. J. Impact Eng. 60, 107–119 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors gratefully acknowledge financial support from UTBM and the international relations that allocated funds for Mr. RR Ambriz as a visiting professor. They also wish to thank Mr. D. Schlegel and Mr. Th. Couturier for their help in the design and implementation of various indenter-holders and Mr. D. Tumbajoy for his help in the sample preparation and compression tests on pure iron and pure copper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Langlade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Baida, H., Langlade, C., Kermouche, G. et al. Identifying the stress–strain curve of materials by microimpact testing. Application on pure copper, pure iron, and aluminum alloy 6061-T651. Journal of Materials Research 30, 2222–2230 (2015). https://doi.org/10.1557/jmr.2015.186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.186

Navigation