Skip to main content
Log in

The effects of heating/cooling rate on the phase transformations and thermal expansion coefficient of C–Mn as-cast steel at elevated temperatures

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Dilatometric studies of C–Mn hypoeutectoid steel with an as-cast structure were carried out to study the effects of the heating or cooling rate, heating and cooling process on phase transformation, and the thermal expansion coefficient. As the heating or cooling rate (Vc) increased, the characteristic temperatures of Ac1, Acp, and Ac3 also rose, while Ar3, Ar1, and Arp fell. In addition, the phase transformation temperature range (Ac3Ac1) rose, while (Ar3Arp) fell as the heating or cooling rate increased. At the same time, the maximum thermal expansion coefficients│αT│ between the heating and cooling processes during phase transformation showed significant differences, and the difference (│ΔαT│) in the maximum │αT│ between these processes increased along with the heating or cooling rate, and this is because of the different phase transformation rates, with regard to the change from austenite to ferrite on cooling and ferrite to austenite on heating. During the heating process, the phase transformation rate of ferrite to austenite first decreases and then increases as the temperature rises, and the phase transformation rate of austenite to ferrite first increases and then decreases during the cooling process. The evolution of carbon and substitutional alloying elements (Si and Mn) in austenite during heating and cooling is also analyzed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. B. Barber, B. Patrick, H. Sha, K.H. Spitzer, R. York, R. Scholz, R. Jeschar, and H. Kraushaar: Determination of Strand Surface Temperatures in Continuous Casting; Contract No.: 7210-CA/164/832; European Communities: Printed in Luxembourg, 1998.

  2. M. Allazadeh and C. Garcia: FEM technique to study residual stresses developed in continuously cast steel during solid-solid phase transformation. Ironmaking Steelmaking 38 (8), 566 (2011).

    Article  CAS  Google Scholar 

  3. H.G. Suzuki, S. Nishimura, and S. Yamaguchi: Characteristics of hot ductility in steels subjected to the melting and solidification. Trans. ISIJ 22 (1), 48 (1982).

    Article  Google Scholar 

  4. H.G. Suzuki, S. Nishimura, J. Imamura, and Y. Nakamura: Embrittlement of steels occurring in the temperature range from 1000 to 600. DEG. C. Trans. ISIJ 24 (3), 169 (1984).

    Article  CAS  Google Scholar 

  5. J.D. James, J.A. Spittle, S.G.R. Brown, and R.W. Evans: A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Meas. Sci. Technol. 12 (3), R1 (2001).

    Article  CAS  Google Scholar 

  6. S.J. Lee, K.D. Clarke, and C.J. Van Tyne: An on-heating dilation conversional model for austenite formation in hypoeutectoid steels. Metall. Mater. Trans. A 41 (9), 2224 (2010).

    Article  Google Scholar 

  7. C.G. De Andres, F.G. Caballero, C. Capdevila, and L.F. Alvarez: Application of dilatometric analysis to the study of solid–solid phase transformations in steels. Mater. Charact. 48 (1), 101 (2002).

    Article  Google Scholar 

  8. D.W. Suh, C.S. Oh, H.N. Han, and S.J. Kim: Dilatometric analysis of austenite decomposition considering the effect of non-isotropic volume change. Acta Mater. 55 (8), 2659 (2007).

    Article  CAS  Google Scholar 

  9. D. San Martín, P.E.J. Rivera Díaz del Castillo, and C.G. de Andrés: In situ study of austenite formation by dilatometry in a low carbon microalloyed steel. Scr. Mater. 58 (10), 926 (2008).

    Article  Google Scholar 

  10. T.A. Kop, J. Sietsma, and S. Van Der Zwaag: Dilatometric analysis of phase transformations in hypo-eutectoid steels. J. Mater. Sci. 36 (2), 519 (2001).

    Article  CAS  Google Scholar 

  11. S. Choi: Model for estimation of transformation kinetics from the dilatation data during a cooling of hypoeutectoid steels. Mater. Sci. Eng., A 363 (1), 72 (2003).

    Article  Google Scholar 

  12. J.Y. Kang, S.J. Park, D.W. Suh, and H.N. Han: Estimation of phase fraction in dual phase steel using microscopic characterizations and dilatometric analysis. Mater. Charact. 84, 205 (2013).

    Article  CAS  Google Scholar 

  13. F.G. Caballero, C. Capdevila, and C.G. De Andres: Modelling of kinetics and dilatometric behaviour of austenite formation in a low-carbon steel with a ferrite plus pearlite initial microstructure. J. Mater. Sci. 37 (16), 3533 (2002).

    Article  CAS  Google Scholar 

  14. T.C. Tszeng and G.A. Shi: A global optimization technique to identify overall transformation kinetics using dilatometry data—Applications to austenitization of steels. Mater. Sci. Eng., A 380 (1), 123 (2004).

    Article  Google Scholar 

  15. B. Pawłowski: Critical points of hypoeutectoid steel–prediction of the pearlite dissolution finish temperature Ac1f. J. Achiev. Mater. Manuf. Eng. 49 (2), 331 (2011).

    Google Scholar 

  16. B. Pawłowski: Dilatometric examination of continuously heated austenite formation in hypoeutectoid steels. J. Achiev. Mater. Manuf. Eng. 54 (2), 185 (2012).

    Google Scholar 

  17. F.L.G. Oliveira, M.S. Andrade, and A.B. Cota: Kinetics of austenite formation during continuous heating in a low carbon steel. Mater. Charact. 58 (3), 256 (2007).

    Article  CAS  Google Scholar 

  18. M.J. Long, Z.H. Dong, D.F. Chen, X. Zhang, and L. Zhang: Influence of cooling rate on austenite transformation and contraction of continuously cast steels. Ironmak. Steelmak. 42 (4), 282 (2015).

    Article  CAS  Google Scholar 

  19. ASTM E562–11: Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count (ASTM International, PA, USA, 2011).

    Google Scholar 

  20. S.D. Martín, D.T. Cock, A. García Junceda, F.G. Caballero, C. Capdevila, and C.G. de Andrés: Effect of heating rate on reaustenitisation of low carbon niobium microalloyed steel. Mater. Sci. Technol. 24 (3), 266 (2008).

    Article  Google Scholar 

  21. C.G. de Andrés, F.G. Caballero, and C. Capdevila: Dilatometric characterization of pearlite dissolution in 0.1 C-0.5 Mn low carbon low manganese steel. Scr. Mater. 38 (12), 1835 (1998).

    Article  Google Scholar 

  22. P.R. Howell: The pearlite reaction in steels mechanisms and crystallography: Part I. From HC Sorby to RF Mehl. Mater. Charact. 40 (4), 227 (1998).

    Article  CAS  Google Scholar 

  23. K.D. Clarke, C.J. Van Tyne, C.J. Vigil, and R.E. Hackenberg: Induction hardening 5150 steel: Effects of initial microstructure and heating rate. J. Mater. Eng. Perform. 20 (2), 161 (2011).

    Article  CAS  Google Scholar 

  24. M. Onink, C.M. Brakman, F.D. Tichelaar, E.J. Mittemeijer, S. Van der Zwaag, J.H. Root, and N.B. Konyer: The lattice parameters of austenite and ferrite in Fe-C alloys as functions of carbon concentration and temperature. Scr. Metall. Mater. 29 (8), 1011 (1993).

    Article  CAS  Google Scholar 

  25. M.I. Onsøien, M. M’hamdi, and A. Mo: A CCT diagram for an offshore pipeline steel of X70 type. Weld. J 88 (1), 1s (2009).

    Google Scholar 

  26. R. Petrov, L. Kestens, and Y. Houbaert: Characterization of the microstructure and transformation behaviour of strained and nonstrained austenite in Nb–V-alloyed C–Mn steel. Mater. Charact. 53 (1), 51 (2004).

    Article  CAS  Google Scholar 

  27. F.G. Caballero, C. Capdevila, and C. García De Andrés: Modelling of kinetics of austenite formation in steels with different initial microstructures. ISIJ Int. 41 (10), 1093 (2001).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was financially supported by the National Natural Science Foundation of China (NSFC, project No. 51374260, No. 61303208) and The Aim for the Top University Project of National Cheng Kung University (project No. D103-23014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Jian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, Z., Deng-Fu, C., Cheng-Qian, Z. et al. The effects of heating/cooling rate on the phase transformations and thermal expansion coefficient of C–Mn as-cast steel at elevated temperatures. Journal of Materials Research 30, 2081–2089 (2015). https://doi.org/10.1557/jmr.2015.173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.173

Navigation