Skip to main content
Log in

Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To study the thermal deformation behavior and microstructural evolution of the type 347H austenitic steel, compression experiments were conducted at the temperatures of 800–1100 °C with strain rates of 0.01–10 s−1. The activation energy and constitutive equation of the type 347H steel during thermal deformation process were determined according to the flow stress curves. Both the hot processing maps and microstructure characteristics under different deformation conditions were investigated. Based on the thermal processing maps, two unstable regions under 800 °C/0.01–10 s−1 and 1100 °C/0.01 s−1 were identified. The processing maps were in favor of optimizing thermal processing parameters and improving thermal processing properties of the type 347H austenitic steel. After thermal deformation, the dislocation in the austenite matrix increases significantly. Besides, in the stable regions, the precipitation of carbides is facilitated by thermal deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. Z.H. Wang, W.T. Fu, B.Z. Wang, W.Z. Wang, W.H. Zhang, Z.Q. Lv, and P. Jiang: Study on hot deformation characteristics of 12%Cr ultra-super-critical rotor steel using processing maps and Zener–Hollomon parameter. Mater. Charact. 61, 25 (2010).

    Article  CAS  Google Scholar 

  2. J.D. Tian, Q.W. Cai, H.B. Wu, and Y. Ren: Effect of Nb on austenite recrystallization in high temperature deformation process. J. Iron Steel Res. Int. 17, 39 (2010).

    Google Scholar 

  3. K.H. Lo, C.H. Shek, and J.K.L. Lai: Recent developments in stainless steels. Mater. Sci. Eng., R 65, 39 (2009).

    Article  Google Scholar 

  4. V. Moura, A.Y. Kina, S.S.M. Tavares, L.D. Lima, and F.B. Mainier: Influence of stabilization heat treatments on microstructure, hardness and intergranular corrosion resistance of the AISI 321 stainless steel. J. Mater. Sci. 43, 536 (2008).

    Article  CAS  Google Scholar 

  5. C.Y. Wang, X.J. Wang, and H. Chang: Processing maps for hot working of ZK60 magnesium alloy. Mater. Sci. Eng., A 43, 77 (2007).

    Google Scholar 

  6. S.Q. Lu, X. Li, and K.L. Wang: Dynamic material model theory and its application for controlling microstructures and properties of hot worked materials. Chin. J. Mech. Eng. 43, 77 (2007).

    Article  CAS  Google Scholar 

  7. Vu The Ha and W.S. Jung: Creep behavior and microstructure evolution at 750 °C in a new precipitation-strengthened heat-resistant austenitic stainless steel. Mater. Sci. Eng., A 558, 103 (2012).

    Article  Google Scholar 

  8. D.B. Park, M.Y. Huh, W.S. Jung, J.Y. Suh, J.H. Shim, and S.C. Lee: Effect of vanadium addition on the creep resistance of 18Cr9Ni3CuNbN austenitic stainless heat resistant steel. J. Alloys Compd. 574, 532 (2013).

    Article  CAS  Google Scholar 

  9. Y.H. Liu, Y.Q. Ning, Z.K. Yao, H.Z. Guo, and Y. Nan: Effect of true strains on processing map for isothermal compression of Ni–20.0Cr–2.5Ti–1.5Nb–1.0Al Ni-base superalloy. J. Alloys Compd. 612, 56 (2014).

    Article  CAS  Google Scholar 

  10. R.K.C. Nkhoma, C.W. Siyasiya, and W.E. Stumpf: Hot workability of AISI 321 and AISI 304 austenitic stainless steels. J. Alloys Compd. 595, 103 (2014).

    Article  CAS  Google Scholar 

  11. A.I. Zaky Farahat, T. El-Bitar, and E. El-Shenawy: Austenitic stainless steel bearing Nb compositional and plastic deformation effects. Mater. Sci. Eng., A 492, 161 (2008).

    Article  Google Scholar 

  12. A. Momeni and K. Deghani: Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps. Mater. Sci. Eng., A 527, 5467 (2010).

    Article  Google Scholar 

  13. A. Momeni and K. Deghani: Hot working behavior of 2205 austenite–ferrite duplex stainless steel characterized by constitutive equations and processing maps. Mater. Sci. Eng., A 528, 1448 (2011).

    Article  Google Scholar 

  14. A. Mirzaei, A. Zarei-Hanzaki, N. Haghdadi, and A. Marandi: Constitutive description of high temperature flow behavior of Sanicro-28 super-austenitic stainless steel. Mater. Sci. Eng., A 589, 76 (2014).

    Article  CAS  Google Scholar 

  15. S. Kim, Y.C. Yoo, and B-L. Jang: Modeling of recrystallization and austenite grain size for AISI 316 stainless steel and its application to hot bar rolling. Mater. Sci. Eng., A 311, 108 (2001).

    Article  Google Scholar 

  16. E.S. Silva, R.C. Sousa, A.M. Jorge, Jr., and O. Balancin: Hot deformation behavior of an Nb- and N-bearing austenitic stainless steel biomaterial. Mater. Sci. Eng., A 543, 69 (2012).

    Article  CAS  Google Scholar 

  17. Z. Yanushkevich, A. Belyakov, and R. Kaibyshev: Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773–1273 K. Acta Mater. 82, 244 (2015).

    Article  CAS  Google Scholar 

  18. Y.B. Yang, Z.P. Xie, Z.M. Zhang, X.B. Li, Q. Wang, and Y.H. Zhang: Processing maps for hot deformation of the extruded 7075 aluminum alloy bar: Anisotropy of hot workability. Mater. Sci. Eng., A 615, 183 (2014).

    Article  CAS  Google Scholar 

  19. J.Z. Wang, Z.D. Liu, S.C. Chang, and H.S. Bao: Hot deformation behaviors of S31042 austenitic heat resistant steel. J. Iron Steel Res. Int. 18, 54 (2011).

    Article  CAS  Google Scholar 

  20. O. Sivakesavam and Y.V.R.K. Prasad: Processing map for hot working of hot rolled Mg-11.5Li-1.5Al alloy. Z. Metallkd. 93, 123 (2002).

    Article  CAS  Google Scholar 

  21. J. Moon, T-H. Lee, J-H. Shin, and J-W. Lee: Hot working behavior of a nitrogen-alloyed Fe-18Mn-18Cr-N austenitic stainless steel. Mater. Sci. Eng., A 594, 302 (2014).

    Article  CAS  Google Scholar 

  22. A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson: Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation. Mater. Sci. Eng., A 485, 664 (2008).

    Article  Google Scholar 

  23. H.Y. Sun, Y.D. Sun, R.Q. Zhang, M. Wang, R. Tang, and Z.J. Zhou: Hot deformation behavior and microstructural evolution of a modified 310 austenitic steel. Mater. Des. 67, 165 (2015).

    Article  CAS  Google Scholar 

  24. S.P. Tan, Z.H. Wang, S.C. Cheng, Z.D. Liu, J.C. Han, and W.T. Fu: Processing maps and hot workability of Super304H austenitic heat-resistant stainless steel. Mater. Sci. Eng., A 517, 312 (2009).

    Article  Google Scholar 

  25. G.W. Liu, Y. Han, Z.Q. Shi, J.P. Sun, D. Zou, and G.J. Qiao: Hot deformation and optimization of process parameters of an as-cast 6Mo super austenitic stainless steel: A study with processing map. Mater. Des. 53, 662 (2014).

    Article  CAS  Google Scholar 

  26. E.X. Pu, W.J. Zheng, J.Z. Xiang, Z.G. Song, and J. Li: Hot deformation characteristic and processing map of super austenitic stainless steel S32654. Mater. Sci. Eng., A 598, 174 (2014).

    Article  CAS  Google Scholar 

  27. Z.H. Wang, S.H. Sun, B. Wang, Z.P. Shi, and W.T. Fu: Effect of grain size on dynamic recrystallization and hot-ductility behaviors in high-nitrogen CrMn austenitic stainless steel. Metall. Mater. Trans. A 45A, 3363 (2014).

    Google Scholar 

  28. D. Samantaray, S. Mandal, and A.K. Bhaduri: Optimization of hot working parameters for thermo-mechanical processing of modified 9Cr–1Mo (P91) steel employing dynamic materials model. Mater. Sci. Eng., A 528, 5204 (2011).

    Article  CAS  Google Scholar 

  29. H.Y. Sun, Y.D. Sun, R.Q. Zhang, M. Wang, R. Tang, and Z.J. Zhou: Study on hot workability and optimization of process parameters of a modified 310 austenitic stainless steel using processing maps. Mater. Des. 64, 374 (2014).

    Article  CAS  Google Scholar 

  30. S.M. Hong, M.Y. Kim, D.J. Min, K.H. Lee, J.H. Shim, D.I. Kim, J.Y. Suh, W.S. Jung, and I.S. Choi: Unraveling the origin of strain-induced precipitation of M23C6 in the plastically deformed 347 austenite stainless steel. Mater. Charact. 94, 7 (2014).

    Article  CAS  Google Scholar 

  31. A. Momeni, K. Dehghani, H. Keshmiri, and G.R. Ebrahimi: Hot deformation behavior and microstructural evolution of a super austenitic stainless steel. Mater. Sci. Eng., A 527, 1605 (2010).

    Article  Google Scholar 

  32. P. Behjati, A. Kermanpur, A. Najafizadeh, and H.S. Baghbadorani: Influence of nitrogen alloying on properties of Fe–18Cr–12Mn–XN austenitic stainless steels. Mater. Sci. Eng., A 618, 16 (2014).

    Article  CAS  Google Scholar 

  33. Y. Wang, X.G. Zhang, L.G. Meng, H. Zhu, M. Zhao, and N. Jiang: The microstructure and properties evolution of Al-Si/Al-Mn clad sheet during plastic deformation. J. Mater. Res. 28, 1601 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the China National Funds for Distinguished Young Scientists (Grant No. 51325401), the International Thermonuclear Experimental Reactor (ITER) Program Special Project (Grant No. 2014GB125006), the National High Technology Research and Development Program (“863”Program) of China (Granted No. 2015AA042504), the National Natural Science Foundation of China (Grant No. 51474156), and the Natural Science Foundation of Tianjin City (Grant No. 12JCYBJC11800) for grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Liu, Y., Zhou, X. et al. Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel. Journal of Materials Research 30, 2090–2100 (2015). https://doi.org/10.1557/jmr.2015.168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.168

Navigation