Skip to main content
Log in

Nonequilibrium grain-boundary segregation mechanism of hot ductility loss for austenitic and ferritic stainless steels

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An interesting experimental phenomenon was obtained by Mintz that the hot ductility of an austenitic steel decreases with decreasing strain rate whereas that of a ferritic steel increases. However, the mechanism is still unclear. In this study, the critical time and critical cooling rate of nonequilibrium grain-boundary segregation (NGS) are calculated. It is shown that for Mintz’s thermal cycle prior to tensile testing, the effective time of the austenitic steel is shorter than the critical time and that of the ferritic steel is longer than the critical time. When the strain rate decreases, the elastic stress aging time increases. As a result, for the austenitic steel, the grain-boundary segregation of impurity increases, thereby reducing the hot ductility, whereas for the ferritic steel, the segregation of impurity decreases, thereby enhancing the hot ductility. Consequently, the hot ductility loss of both austenitic and ferritic stainless steels is induced by NGS of impurity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. B. Mintz, S. Yue, and J.J. Jonas: Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting. Int. Mater. Rev. 35, 187 (1991).

    Article  Google Scholar 

  2. C. Ouchi and K. Matsumoto: Hot ductility in Nb-bearing high-strength low-alloy steel. Trans. Iron Steel Inst. Jpn. 22, 181 (1982).

    Article  CAS  Google Scholar 

  3. G.D. Bengough: A study of the properties of alloys at high temperatures. J. Inst. Met. 7, 123 (1912).

    Google Scholar 

  4. F. Tang, S. Emura, and M. Hagiwara: Tensile properties of tungsten-modified orthorhombic Ti-22Al-20Nb-2W alloy. Scr. Mater. 44, 671 (2001).

    Article  CAS  Google Scholar 

  5. K. Horikawa, S. Kuramoto, and M. Kanno: Intergranular fracture caused by trace impurities in an Al–5.5 mol% Mg alloy. Acta Mater. 49, 3981 (2001).

    Article  CAS  Google Scholar 

  6. S.P. Lynch: Comments on “Intergranular fracture caused by trace impurities in an Al–5.5 mol% Mg alloy”. Scr. Mater. 47, 125 (2002).

    Article  CAS  Google Scholar 

  7. K. Horikawa, S. Kuramoto, and M. Kanno: Reply to comments on: Intergranular fracture caused by trace impurities in an Al-5.5 mol% Mg alloy. Scr. Mater. 47, 131 (2002).

    Article  CAS  Google Scholar 

  8. B. Mintz and D.N. Crowther: Hot ductility of steels and its relationship to the problem of transverse cracking in continuous casting. Int. Mater. Rev. 55, 168 (2010).

    Article  CAS  Google Scholar 

  9. J. Rösler, H. Harders, and M. Bäker: Mechanical Behaviour of Engineering materials (Springer-Verlag, Berlin Heidelberg, Germany, 2007); p. 396. ISBN 978-3-540-73446-8.

    Google Scholar 

  10. D.S. Sun, T. Yamane, and K. Hirao: Influence of thermal histories on intermediate temperature embrittlement of an Fe-17Cr alloy. J. Mater. Sci. 26, 5767 (1991).

    Article  CAS  Google Scholar 

  11. B. Mintz, M. Shaker, and D.N. Crowther: Hot ductility of an austenitic and a ferritic stainless steel. Mater. Sci. Technol. 13, 243 (1997).

    Article  CAS  Google Scholar 

  12. T.D. Xu, L. Zheng, K. Wang, and R.D.K. Misra: Unified mechanism of intergranular embrittlement based on non-equilibrium grain boundary segregation. Int. Mater. Rev. 58, 263 (2013).

    Article  CAS  Google Scholar 

  13. T.D. Xu and B.Y. Cheng: Kinetics of non-equilibrium grain boundary segregation. Prog. Mater. Sci. 49, 109 (2004).

    Article  CAS  Google Scholar 

  14. T.D. Xu and S.H. Song: A kinetic model of non-equilibrium grain-boundary segregation. Acta Metall. 37, 2499 (1989).

    Article  CAS  Google Scholar 

  15. T.D. Xu: Non-equilibrium grain-boundary segregation kinetics. J. Mater. Sci. 22, 337 (1987).

    Article  CAS  Google Scholar 

  16. T.D. Xu: The critical time and critical cooling rate of non-equilibrium grain-boundary segregation. J. Mater. Sci. Lett. 7, 241 (1988).

    Article  CAS  Google Scholar 

  17. T.D. Xu: Creating and destroying vacancies in solids and non-equilibrium grain-boundary segregation. Philos. Mag. 83, 889 (2003).

    Article  CAS  Google Scholar 

  18. T.D. Xu: Model for intergranular segregation/dilution induced by applied stress. J. Mater. Sci. 35, 5621 (2000).

    Article  CAS  Google Scholar 

  19. T.D. Xu: Kinetics of non-equilibrium grain-boundary segregation induced by applied tensile stress and its computer simulation. Scr. Mater. 46, 759 (2002).

    Article  CAS  Google Scholar 

  20. T.D. Xu: Grain-boundary anelastic relaxation and non-equilibrium dilution induced by compressive stress and its kinetic simulation. Philos. Mag. 87, 1581 (2007).

    Article  CAS  Google Scholar 

  21. T.M. Williams, A.M. Stoneham, and D.R. Harries: The segregation of boron to grain boundaries in solution-treated Type 316 austenitic stainless steel. Met. Sci. 10, 14 (1976).

    Article  CAS  Google Scholar 

  22. R.G. Faulkner: Non-equilibrium grain-boundary segregation kinetics. J. Mater. Sci. 16, 373 (1981).

    Article  CAS  Google Scholar 

  23. P. Doig and P.E.J. Flewitt: Segregation of chromium to prior austenite boundaries during quenching of a 214%crl%mo steel. Acta Mater. 29, 1831 (1981).

    Article  CAS  Google Scholar 

  24. R.G. Faulkner: Combined grain boundary equilibrium and non-equilibrium segregation in ferritic/martensitic steels. Acta Metall. 35, 2905 (1987).

    Article  CAS  Google Scholar 

  25. T.D. Xu, S.H. Song, H.Z. Shi, W. Gust, and Z.X. Yuan: A method of determining the diffusion coefficient of vacancy-solute atom complexes during the segregation to grain boundaries. Acta Metall. Mater. 39, 3119 (1991).

    Article  CAS  Google Scholar 

  26. R.D.K. Misra and T.V. Balasubramanian: Co-operative and site-competitive interaction processes at the grain boundaries of a Ni-Cr-Mo-V steel. Acta Metall. 37, 1475 (1989).

    Article  CAS  Google Scholar 

  27. R.D.K. Misra and P. Rama Rao: Grain boundary segregation isotherms. Mater. Sci. Technol. 13, 277 (1997).

    Article  CAS  Google Scholar 

  28. C.L. Briant: Grain boundary segregation of phosphorus and sulfur in types 304L and 316L stainless steel and its effect on intergranular corrosion in the huey test. Metall. Trans. A 18, 691 (1987).

    Article  Google Scholar 

  29. K.T. Aust, R.E. Hanneman, P. Niessen, and J.H. Westbrook: Intergranular corrosion and mechanical properties of austenitic stainless steels. Acta Metall. 16, 291 (1968).

    Article  CAS  Google Scholar 

  30. T.R. Anthony: Solute segregation in vacancy gradients generated by sintering and temperature changes. Acta Metall. 17, 603 (1969).

    Article  CAS  Google Scholar 

  31. L. Karlsson, H. Norden, and H. Odelius: Non-equilibrium grain boundary segregation of boron in austenitic stainless steel-I. Acta Metall. 36, 1 (1988).

    Article  CAS  Google Scholar 

  32. Z.X. Yuan, J. Jia, A.M. Guo, D.D. Shen, and S.H. Song: Cooling-induced tin segregation to grain boundaries in a low-carbon steel. Scr. Mater. 48, 203 (2003).

    Article  CAS  Google Scholar 

  33. S.H. Song, Z.X. Yuan, J. Jia, A.M. Guo, and D.D. Shen: The role of tin in the hot-ductility deterioration of a low-carbon steel. Metall. Mater. Trans. A 34, 1611 (2003).

    Article  Google Scholar 

  34. Z.X. Yuan, J. Jia, A.M. Guo, D.D. Shen, S.H. Song, and J. Liu: Influence of tin on the hot ductility of a low-carbon steel. Acta Metall. Sin. (Engl. Lett.) 16, 478 (2003).

    CAS  Google Scholar 

  35. E. El-Kashif, K. Asakura, and K. Shibata: Effect of cooling rate after recrystallization on P and B segregation along grain boundary in IF steels. ISIJ Int. 43, 2007 (2003).

    Article  CAS  Google Scholar 

  36. K. Wang, M.Q. Wang, H. Si, and T.D. Xu: Critical time for non-equilibrium grain boundary segregation of phosphorus in 304L stainless steel. Mater. Sci. Eng., A 485, 347 (2008).

    Article  Google Scholar 

  37. D.S. Sun, T. Yamane, and K. Hirao: Intermediate-temperature brittleness of a ferritic 17Cr stainless steel. J. Mater. Sci. 26, 689 (1991).

    Article  CAS  Google Scholar 

  38. S.H. Song and L.Q. Weng: Diffusion of vacancy-solute complexes in alloys. Mater. Sci. Technol. 21, 305 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The work was supported by the National Nature Science Foundation of China (Grant No. 51171050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenjun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Yu, H., Wang, K. et al. Nonequilibrium grain-boundary segregation mechanism of hot ductility loss for austenitic and ferritic stainless steels. Journal of Materials Research 30, 2117–2123 (2015). https://doi.org/10.1557/jmr.2015.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.155

Navigation