Abstract
Semisolid powder processing (SPP) was used to fabricate n-type bismuth telluride-based polycrystalline bulk materials with improved thermoelectric properties. The minimum lattice thermal conductivity and the maximum ZT value of the SPP sample obtained in this study are 0.163 W m−1 K−1 at 383 K and 0.89 at 423 K, respectively. This ZT value exhibited a significant enhancement of 65.7 and 101.3% compared with the hot-pressing and the die-casting counterparts, respectively. The reduction of the lattice thermal conductivity is mainly due to the nanoscale grains and the mesoscale pores induced by the SPP. The grain boundaries and the interfaces brought by the porosities could scatter the phonons with mean free paths extensively from 300 nm to 1 μm. The remarkable enhancement of the ZT value and the convenient fabricating process suggest that the SPP is a promising method for mass production of high-performance bismuth telluride-based polycrystalline bulk materials.
Similar content being viewed by others
References
H.J. Goldsmid: Electronic Refrigeration (Pion Limited, London, 1986).
G.J. Snyder and E.S. Toberer: Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008).
A. Soni, Y.Y. Zhao, L.G. Yu, M.K.K. Aik, M.S. Dresselhaus, and Q.H. Xiong: Enhanced thermoelectric properties of solution grown Bi2Te3− xSex nanoplatelet composites. Nano Lett. 12(3), 1203–1209 (2012).
H.J. Goldsmid and A.W. Penn: Boundary scattering of phonons in solid solutions. Phys. Lett. A 27(8), 523–524 (1968).
R. Yang and G. Chen: Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys. Rev. B: Condens. Matter 69(19), 195316 (2004).
G.Y. Jiang, Y. Chen, T.J. Zhu, X.H. Liu, and X.B. Zhao: Microstructure and thermoelectric properties of InSb compound with nonsoluble NiSb in situ precipitates. J. Mater. Res. 28(24), 3394–3400 (2013).
M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19(8), 1043–1053 (2007).
P. Jood, G. Peleckis, X.L. Wang, and S.X. Dou: Thermoelectric properties of Ca3Co4O9 and Ca2.8Bi0.2Co4O9 thin films in their island formation mode. J. Mater. Res. 28(14), 1932–1939 (2013).
E. Combe, R. Funahashi, F. Azough, and R. Freer: Relationship between microstructure and thermoelectric properties of Bi2Sr2Co2Ox bulk materials. J. Mater. Res. 29(12), 1376–1382 (2014).
H-S. Kim and S-J. Hong: Thermoelectric properties of n-type 95%Bi2Te3–5%Bi2Se3 compounds fabricated by gas-atomization and spark plasma sintering. J. Alloys Compd. 586, S428–S431 (2014).
D-H. Kim and T. Mitani: Thermoelectric properties of fine-grained Bi2Te3 alloys. J. Alloys Compd. 399(1), 14–19 (2005).
A. Soni, Y. Shen, M. Yin, Y. Zhao, L. Yu, X. Hu, Z. Dong, K.A. Khor, M.S. Dresselhaus, and Q. Xiong: Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites. Nano Lett. 12(8), 4305–4310 (2012).
Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen, and G.J. Snyder: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473(7345), 66–69 (2011).
Y. Wu and G.Y. Kim: Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing. J. Mater. Process. Technol. 211(8), 1341–1347 (2011).
T.J. Chen, Y. Hao, and J. Sun: Microstructural evolution of previously deformed ZA27 alloy during partial remelting. Mater. Sci. Eng., A 337(1), 73–81 (2002).
P.K. Seo, S.W. Youn, and C.G. Kang: The effect of test specimen size and strain-rate on liquid segregation in deformation behavior of mushy state material. J. Mater. Process. Technol. 130, 551–557 (2002).
M. Takashiri, S. Tanaka, H. Hagino, and K. Miyazaki: Combined effect of nanoscale grain size and porosity on lattice thermal conductivity of bismuth-telluride-based bulk alloys. J. Appl. Phys. 112(8), 084315 (2012).
D.Q. Mei, Y. Li, Z.H. Yao, H. Wang, T.J. Zhu, and S.C. Chen: Enhanced thermoelectric performance of n-type PbTe bulk materials fabricated by semisolid powder processing. J. Alloys Compd. 609, 201–205 (2014).
L. Zou, B.P. Zhang, Z.H. Ge, and L.J. Zhang: Enhancing thermoelectric properties of Cu1.8+ xSe compounds. J. Mater. Res. 29(09), 1047–1053 (2014).
J.J. Shen, L.P. Hu, T.J. Zhu, and X.B. Zhao: The texture related anisotropy of thermoelectric properties in bismuth telluride based polycrystalline alloys. Appl. Phys. Lett. 99(12), 124102 (2011).
J. Jiang, L.D. Chen, S.Q. Bai, Q. Yao, and Q. Wang: Fabrication and thermoelectric performance of textured n-type Bi2(Te,Se)3 by spark plasma sintering. Mater. Sci. Eng., B 117(3), 334–338 (2005).
T.S. Mahmoud, F.H. Mahmoud, H.M. Zakaria, and T.A. Khalifa: Effect of squeezing on porosity and wear behaviour of partially remelted A319/20 vol% SiCp metal matrix composites. Proc. Inst. Mech. Eng., Part C 222(3), 295–303 (2008).
L.P. Hu, H.L. Gao, X.H. Liu, H.H. Xie, J.J. Shen, T.J. Zhu, and X.B. Zhao: Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects. J. Mater. Chem. 22(32), 16484–16490 (2012).
D.A. Pinsky, P.O. Charreyron, and M.C. Flemings: Compression of semi-solid dendritic Sn-Pb alloys at low strain rates. Metall. Trans. B 15(1), 173–181 (1984).
T.G. Nguyen and D. Favier: Influence of SiC particle volume fraction on the compressive behaviour of partially remelted AlSi-based composites. Mater. Sci. Eng., A 183(1), 157–167 (1994).
P.K. Seo, C.G. Kang, and Y.I. Son: The effect of velocity control method on the part characteristic in semi-solid die casting. Trans. Korean Soc. Mech. Eng. A 26(10), 2034–2043 (2002).
C.H. Kuo, C.S. Hwang, M.S. Jeng, W.S. Su, Y.W. Chou, and J.R. Ku: Thermoelectric transport properties of bismuth telluride bulk materials fabricated by ball milling and spark plasma sintering. J. Alloys Compd. 496(1), 687–690 (2010).
G.S. Nolas, J. Sharp, and H.J. Goldsmid: Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001).
X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, and X.B. Zhang: Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86(6), 062111 (2005).
R.H. Tarkhanyan and D.G. Niarchos: Reduction of thermal conductivity in porous “gray” materials. APL Mater. 2(7), 076107 (2014).
M.V. Jambunathan: Some properties of beta and gamma distributions. Ann. Math. Stat. 25(2), 401 (1954).
A. Minnich and G. Chen: Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91(7), 073105 (2007).
D. Li, X.Y. Qin, Y.C. Dou, X.Y. Li, R.R. Sun, Q.Q. Wang, L.L. Li, H.X. Xin, N. Wang, N.N. Wang, C.J. Song, Y.F. Liu, and J. Zhang: Thermoelectric properties of hydrothermally synthesized Bi2Te3−xSex nanocrystals. Scr. Mater. 67(2), 161–164 (2012).
ACKNOWLEDGMENTS
The work was supported by the National Natural Science Foundation of China (Grant Nos. 51175460 and 51275466), Science Fund for Creative Research Groups of National Natural Science Foundation of China (Grant No. 51221004), Zhejiang Provincial Funds for Distinguished Young Scientists of China (Grant No. LR14E050002), and the Program for New Century Excellent Talents in University (Grant No. NCET-13-0518).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mei, D., Wang, H., Li, Y. et al. Microstructure and thermoelectric properties of porous Bi2Te2.85Se0.15 bulk materials fabricated by semisolid powder processing. Journal of Materials Research 30, 2585–2592 (2015). https://doi.org/10.1557/jmr.2015.142
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2015.142