Skip to main content
Log in

Microstructure and thermoelectric properties of porous Bi2Te2.85Se0.15 bulk materials fabricated by semisolid powder processing

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Semisolid powder processing (SPP) was used to fabricate n-type bismuth telluride-based polycrystalline bulk materials with improved thermoelectric properties. The minimum lattice thermal conductivity and the maximum ZT value of the SPP sample obtained in this study are 0.163 W m−1 K−1 at 383 K and 0.89 at 423 K, respectively. This ZT value exhibited a significant enhancement of 65.7 and 101.3% compared with the hot-pressing and the die-casting counterparts, respectively. The reduction of the lattice thermal conductivity is mainly due to the nanoscale grains and the mesoscale pores induced by the SPP. The grain boundaries and the interfaces brought by the porosities could scatter the phonons with mean free paths extensively from 300 nm to 1 μm. The remarkable enhancement of the ZT value and the convenient fabricating process suggest that the SPP is a promising method for mass production of high-performance bismuth telluride-based polycrystalline bulk materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. H.J. Goldsmid: Electronic Refrigeration (Pion Limited, London, 1986).

    Google Scholar 

  2. G.J. Snyder and E.S. Toberer: Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008).

    Article  CAS  Google Scholar 

  3. A. Soni, Y.Y. Zhao, L.G. Yu, M.K.K. Aik, M.S. Dresselhaus, and Q.H. Xiong: Enhanced thermoelectric properties of solution grown Bi2Te3− xSex nanoplatelet composites. Nano Lett. 12(3), 1203–1209 (2012).

    Article  CAS  Google Scholar 

  4. H.J. Goldsmid and A.W. Penn: Boundary scattering of phonons in solid solutions. Phys. Lett. A 27(8), 523–524 (1968).

    Article  CAS  Google Scholar 

  5. R. Yang and G. Chen: Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys. Rev. B: Condens. Matter 69(19), 195316 (2004).

    Article  Google Scholar 

  6. G.Y. Jiang, Y. Chen, T.J. Zhu, X.H. Liu, and X.B. Zhao: Microstructure and thermoelectric properties of InSb compound with nonsoluble NiSb in situ precipitates. J. Mater. Res. 28(24), 3394–3400 (2013).

    Article  CAS  Google Scholar 

  7. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19(8), 1043–1053 (2007).

    Article  CAS  Google Scholar 

  8. P. Jood, G. Peleckis, X.L. Wang, and S.X. Dou: Thermoelectric properties of Ca3Co4O9 and Ca2.8Bi0.2Co4O9 thin films in their island formation mode. J. Mater. Res. 28(14), 1932–1939 (2013).

    Article  CAS  Google Scholar 

  9. E. Combe, R. Funahashi, F. Azough, and R. Freer: Relationship between microstructure and thermoelectric properties of Bi2Sr2Co2Ox bulk materials. J. Mater. Res. 29(12), 1376–1382 (2014).

    Article  CAS  Google Scholar 

  10. H-S. Kim and S-J. Hong: Thermoelectric properties of n-type 95%Bi2Te3–5%Bi2Se3 compounds fabricated by gas-atomization and spark plasma sintering. J. Alloys Compd. 586, S428–S431 (2014).

    Article  CAS  Google Scholar 

  11. D-H. Kim and T. Mitani: Thermoelectric properties of fine-grained Bi2Te3 alloys. J. Alloys Compd. 399(1), 14–19 (2005).

    Article  CAS  Google Scholar 

  12. A. Soni, Y. Shen, M. Yin, Y. Zhao, L. Yu, X. Hu, Z. Dong, K.A. Khor, M.S. Dresselhaus, and Q. Xiong: Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites. Nano Lett. 12(8), 4305–4310 (2012).

    Article  CAS  Google Scholar 

  13. Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen, and G.J. Snyder: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473(7345), 66–69 (2011).

    Article  CAS  Google Scholar 

  14. Y. Wu and G.Y. Kim: Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing. J. Mater. Process. Technol. 211(8), 1341–1347 (2011).

    Article  CAS  Google Scholar 

  15. T.J. Chen, Y. Hao, and J. Sun: Microstructural evolution of previously deformed ZA27 alloy during partial remelting. Mater. Sci. Eng., A 337(1), 73–81 (2002).

    Article  Google Scholar 

  16. P.K. Seo, S.W. Youn, and C.G. Kang: The effect of test specimen size and strain-rate on liquid segregation in deformation behavior of mushy state material. J. Mater. Process. Technol. 130, 551–557 (2002).

    Article  Google Scholar 

  17. M. Takashiri, S. Tanaka, H. Hagino, and K. Miyazaki: Combined effect of nanoscale grain size and porosity on lattice thermal conductivity of bismuth-telluride-based bulk alloys. J. Appl. Phys. 112(8), 084315 (2012).

    Article  Google Scholar 

  18. D.Q. Mei, Y. Li, Z.H. Yao, H. Wang, T.J. Zhu, and S.C. Chen: Enhanced thermoelectric performance of n-type PbTe bulk materials fabricated by semisolid powder processing. J. Alloys Compd. 609, 201–205 (2014).

    Article  CAS  Google Scholar 

  19. L. Zou, B.P. Zhang, Z.H. Ge, and L.J. Zhang: Enhancing thermoelectric properties of Cu1.8+ xSe compounds. J. Mater. Res. 29(09), 1047–1053 (2014).

    Article  CAS  Google Scholar 

  20. J.J. Shen, L.P. Hu, T.J. Zhu, and X.B. Zhao: The texture related anisotropy of thermoelectric properties in bismuth telluride based polycrystalline alloys. Appl. Phys. Lett. 99(12), 124102 (2011).

    Article  Google Scholar 

  21. J. Jiang, L.D. Chen, S.Q. Bai, Q. Yao, and Q. Wang: Fabrication and thermoelectric performance of textured n-type Bi2(Te,Se)3 by spark plasma sintering. Mater. Sci. Eng., B 117(3), 334–338 (2005).

    Article  Google Scholar 

  22. T.S. Mahmoud, F.H. Mahmoud, H.M. Zakaria, and T.A. Khalifa: Effect of squeezing on porosity and wear behaviour of partially remelted A319/20 vol% SiCp metal matrix composites. Proc. Inst. Mech. Eng., Part C 222(3), 295–303 (2008).

    Article  CAS  Google Scholar 

  23. L.P. Hu, H.L. Gao, X.H. Liu, H.H. Xie, J.J. Shen, T.J. Zhu, and X.B. Zhao: Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects. J. Mater. Chem. 22(32), 16484–16490 (2012).

    Article  CAS  Google Scholar 

  24. D.A. Pinsky, P.O. Charreyron, and M.C. Flemings: Compression of semi-solid dendritic Sn-Pb alloys at low strain rates. Metall. Trans. B 15(1), 173–181 (1984).

    Article  Google Scholar 

  25. T.G. Nguyen and D. Favier: Influence of SiC particle volume fraction on the compressive behaviour of partially remelted AlSi-based composites. Mater. Sci. Eng., A 183(1), 157–167 (1994).

    Article  CAS  Google Scholar 

  26. P.K. Seo, C.G. Kang, and Y.I. Son: The effect of velocity control method on the part characteristic in semi-solid die casting. Trans. Korean Soc. Mech. Eng. A 26(10), 2034–2043 (2002).

    Article  Google Scholar 

  27. C.H. Kuo, C.S. Hwang, M.S. Jeng, W.S. Su, Y.W. Chou, and J.R. Ku: Thermoelectric transport properties of bismuth telluride bulk materials fabricated by ball milling and spark plasma sintering. J. Alloys Compd. 496(1), 687–690 (2010).

    Article  CAS  Google Scholar 

  28. G.S. Nolas, J. Sharp, and H.J. Goldsmid: Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001).

    Book  Google Scholar 

  29. X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, and X.B. Zhang: Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86(6), 062111 (2005).

    Article  Google Scholar 

  30. R.H. Tarkhanyan and D.G. Niarchos: Reduction of thermal conductivity in porous “gray” materials. APL Mater. 2(7), 076107 (2014).

    Article  Google Scholar 

  31. M.V. Jambunathan: Some properties of beta and gamma distributions. Ann. Math. Stat. 25(2), 401 (1954).

    Article  Google Scholar 

  32. A. Minnich and G. Chen: Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91(7), 073105 (2007).

    Article  Google Scholar 

  33. D. Li, X.Y. Qin, Y.C. Dou, X.Y. Li, R.R. Sun, Q.Q. Wang, L.L. Li, H.X. Xin, N. Wang, N.N. Wang, C.J. Song, Y.F. Liu, and J. Zhang: Thermoelectric properties of hydrothermally synthesized Bi2Te3−xSex nanocrystals. Scr. Mater. 67(2), 161–164 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the National Natural Science Foundation of China (Grant Nos. 51175460 and 51275466), Science Fund for Creative Research Groups of National Natural Science Foundation of China (Grant No. 51221004), Zhejiang Provincial Funds for Distinguished Young Scientists of China (Grant No. LR14E050002), and the Program for New Century Excellent Talents in University (Grant No. NCET-13-0518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqing Mei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, D., Wang, H., Li, Y. et al. Microstructure and thermoelectric properties of porous Bi2Te2.85Se0.15 bulk materials fabricated by semisolid powder processing. Journal of Materials Research 30, 2585–2592 (2015). https://doi.org/10.1557/jmr.2015.142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.142

Navigation