Skip to main content
Log in

Microstructure evolution during heat treatment of superalloys loaded with different amounts of carbon

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of heat treatment for recovering microstructure of a Ni-based single crystal superalloy with carbon addition have been evaluated. The heat treatment resulted in increased levels of chemical homogeneity. All the samples experienced more γ coarsening than as-cast samples. Significant changes to as-cast carbide morphologies were observed. Script-type, MC carbide networks transformed during heat treatment to smaller, spherical Ta-rich MC carbides. Heat treatment caused significant MC carbide decomposition and formation of Cr-rich secondary carbides on or near to decomposed carbides in all modifications. The size of carbides after heat treatment was less than that of cast alloy obviously, and the distribution of carbides became more and more dispersion than in cast alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. R.C. Reed: The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, 2006); p. 147.

    Book  Google Scholar 

  2. Q.Y. Shi, X.F. Ding, M.L. Wang, Y.R. Zheng, J.P. He, S. Tin, and Q. Feng: Co effect on as-cast and heat-treated microstructures in Ru-containing single crystal superalloys. Metall. Mater. Trans. A 45, 1833 (2014).

    Article  CAS  Google Scholar 

  3. G. Liu, L. Liu, C. Ai, B.M. Ge, J. Zhang, and H.Z. Fu: Influence of withdrawal rate on the microstructure of Ni-base single-crystal superalloys containing Re and Ru. J. Alloys Compd. 509, 5866 (2011).

    Article  CAS  Google Scholar 

  4. P. Berthod, C. Heil, and L. Aranda: Influence of the morphologic evolution of the eutectic carbides at high temperature on the thermal expansion behavior of refractory cast alloys. J. Alloys Compd. 504, 243 (2010).

    Article  CAS  Google Scholar 

  5. S.M. Seo, H.W. Jeong, Y.K. Ahn, D.W. Yun, J.H. Lee, and Y.S. Yoo: A comparative study of quantitative microsegregation analyses performed during the solidification of the Ni-base superalloy CMSX-10. Mater. Charact. 89, 43 (2014).

    Article  CAS  Google Scholar 

  6. G.E. Fuchs: Improvement of creep strength of a third generation, single-crystal Ni-base superalloy by solution heat treatment. J. Mater. Eng. Perform. 11(1), 19 (2002).

    Article  CAS  Google Scholar 

  7. G.E. Fuchs: Solution heat treatment response of a third generation single crystal Ni-base superalloy. Mater. Sci. Eng., A 300, 52 (2001).

    Article  Google Scholar 

  8. R.C. Kramb, M.M. Antony, and S.L. Semiatin: Homogenization of a nickel-base superalloy ingot material. Scr. Mater. 54, 1645 (2006).

    Article  CAS  Google Scholar 

  9. R.S. Paulo, E.S. Azevedo, B. Renato, and A.N. Carlos: Solution heat-treatment of Nb-modified MAR-M247 superalloy. Mater. Charact. 75, 214 (2013).

    Article  Google Scholar 

  10. H.S. Lee, D.H. Kim, D.S. Kim, and K.B. Yoo: Microstructral changes by heat treatment for single crystal superalloy exposed at high temperature. J. Alloys Compd. 561, 135 (2013).

    Article  CAS  Google Scholar 

  11. S.R. Hegde, R.M. Kearsey, and J.C. Beddoes: Designing homogenization-solution heat treatments for single crystal superalloys. Mater. Sci. Eng., A 527, 5528 (2010).

    Article  Google Scholar 

  12. C.L. Qiu, X.H. Wu, J.F. Mei, P. Andrews, and W. Voice: Influence of heat treatment on microstructure and tensile behavior of a hot isostatically pressed nickel-based superalloy. J. Alloys Compd. 578, 454 (2013).

    Article  CAS  Google Scholar 

  13. L.T. Chang, W. Sun, Y.Y. Cui, F.Q. Zhang, and R. Yang: Effect of heat treatment on microstructure and mechanical properties of the hot-isostatic-pressed Inconel 718 powder compact. J. Alloys Compd. 590, 227 (2014).

    Article  CAS  Google Scholar 

  14. J.J. Yu, X.F. Sun, N.R. Zhao, T. Jin, H.R. Guan, and Z.Q. Hu: Effect of heat treatment on microstructure and stress rupture life of DD32 single crystal Ni-base superalloy. Mater. Sci. Eng., A 460, 420 (2007).

    Article  Google Scholar 

  15. A. Hzzotte, T. Grosdidier, and S. Denis: Precipitate splitting in nickel-based superalloys: A3-D finite element analysis. Scr. Mater. 34, 601 (1996).

    Article  Google Scholar 

  16. K.A. Al-Jarba and G.E. Fuchs: Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy. Mater. Sci. Eng., A 373, 255 (2004).

    Article  Google Scholar 

  17. Z.H. Yu and L. Liu: Effect of carbon addition on the carbide morphology of single crystal Ni-based superalloy. Trans. Nonferrous Met. Soc. China 24(2), 339 (2014).

    Article  CAS  Google Scholar 

  18. S. Tin and T.M. Pollock: Phase instabilities and carbon additions in single-crystal nickel-base superalloys. Mater. Sci. Eng., A 348, 111 (2003).

    Article  Google Scholar 

  19. J.R. Mihalisin: Some effects of carbon in the production of single crystal superlloy castings. In Superalloys 2004, TMS: Seven Springs, 2004; p. 795.

    Google Scholar 

  20. E.R. Cutler, A.J. Wasson, and G.E. Fuchs: Effect of minor alloying aditions on the carbide morphology in a single crystal Ni-base superalloy. Scr. Mater. 58, 146 (2008).

    Article  CAS  Google Scholar 

  21. E.R. Cutler, A.J. Wasson, and G.E. Fuchs: Effect of minor additions on the solidification of single crystal Ni-base superalloys. J. Cryst. Growth 311, 3753 (2009).

    Article  CAS  Google Scholar 

  22. J. Safari and S. Nategh: On the heat treatment of Rene-80 nickel-base superalloy. J. Mater. Process. Technol. 176, 240 (2006).

    Article  CAS  Google Scholar 

  23. C.M. Kuo, Y.T. Yang, H.Y. Bor, and C.N. Wei: Aging effects on the microstructure and creep behavior of Inconel 718 superalloy. Mater. Sci. Eng., A 510–511, 289 (2009).

    Article  Google Scholar 

  24. Z.H. Yu, L. Liu, X.B. Zhao, W.G. Zhang, J. Zhang, and H.Z. Fu. Effect of carbon additions on the microstructure of a single crystal Ni-base superalloy AM3. China Foundry 7, 352 (2010).

    Google Scholar 

  25. T.M. Pollock, W.H. Merphy, E.H. Goldman, and D.L. Uyam: Grain Defect Formation during directional solidification of nickel base single crystal superalloys. S.D. Antolokch, R.W. Stusrud, R.A. Mackay, eds. Superalloys 1992, Pittsburgh, 1992. Warrendale, PA, TMS, 125 (1992).

  26. A.M. Ges, O. Fornaro, and H.A. Palacio: Coarsening behavior of a Ni-base superalloy under different heat treatment conditions. Mater. Sci. Eng., A 458, 96 (2007).

    Article  Google Scholar 

  27. A.J. Wasson and G.E. Fuchs: Microstructure evolution of a carbon modified single crystal Ni-base superalloy. Mater. Charact. 74, 11 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was jointly supported by the National Natural Science Foundation of China (51201130, 51171151, and 51331005), the National Basic Research Program of China (2011CB610406), National High Technology Research and Development Program (2012AA03A511), and the Key Innovation Team of Shaanxi Province (2014KCT-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuhuan Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Qiang, J., Zhang, J. et al. Microstructure evolution during heat treatment of superalloys loaded with different amounts of carbon. Journal of Materials Research 30, 2064–2072 (2015). https://doi.org/10.1557/jmr.2015.127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.127

Navigation