Skip to main content
Log in

Microstructure evolution and quench sensitivity of Cu–10Ni–3Al–0.8Si alloy during isothermal treatment

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The variation of properties and evolution of microstructure of Cu–10Ni–3Al–0.8Si alloy during isothermal and aging treatment was studied. The time–temperature–property curves of the alloy were established. The nose temperature of the alloy was about 662 °C, and the alloy presented high quench sensitivity when quenched in the nose temperature zone. Discontinuous precipitation occurred when Cu–10Ni–3Al–0.8Si alloy was isothermally treated at 550 °C, and the discontinuous precipitates at the grain boundary became coarse when the isothermal temperature increased to 650 °C. Further increasing the isothermal temperature to 750 °C, cellular precipitation occurred in the alloy. Both Ni3Al precipitates with L12 ordered structure and δ-Ni2Si precipitates with DO22 ordered structure precipitated in the isothermally treated Cu–10Ni–3Al–0.8Si alloy. The orientation relationships between the precipitates and matrix were determined as \({\left[{001} \right]_{{\rm{Cu}}}}\left\| {{{\left[{001} \right]}_{{\rm{N}}{{\rm{i}}_3}{\rm{Al}}}}\left\| {{{\left[{001} \right]}_{\rm{\delta}}}} \right.} \right.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. C-D. Xia, Y-L. Jia, W. Zhang, Q-Y. Dong, G-Y. Xu, and M-P. Wang: Study of deformation and aging behaviors of a hot rolled-quenched Cu-Cr-Zr-Mg-Si alloy during thermomechanical treatments. Mater. Des. 39, 404 (2012).

    Article  CAS  Google Scholar 

  2. F-A. Guo, C-J. Xiang, C-X. Yang, X-M. Cao, S-G. Mu, and Y-Q. Tang: Study of rare earth elements on the physical and mechanical properties of a Cu-Fe-P-Cr alloy. Mater. Sci. Eng., B 147, 1 (2008).

    Article  CAS  Google Scholar 

  3. L. Yagmur: Effect of microstructure on internal friction and Young’s modulus of aged Cu-Be alloy. Mater. Sci. Eng., A 523, 65 (2009).

    Article  Google Scholar 

  4. G-L. Xie, Q-S. Wang, X-J. Mi, B-Q. Xiong, and L-J. Peng: The precipitation behavior and strengthening of a Cu-2.0 wt% Be alloy. Mater. Sci. Eng., A 558, 326 (2012).

    Article  CAS  Google Scholar 

  5. T. Hu, J-H. Chen, J-Z. Liu, Z-R. Liu, and C-L. Wu: The crystallographic and morphological evolution of the strengthening precipitates in Cu-Ni-Si alloys. Acta Mater. 61, 1210 (2012).

    Article  Google Scholar 

  6. J-I. Pérez-Landazábal, V. Recarte, M-L. Nó, and J-J. San: Determination of the order in γ1 intermetallic phase in Cu-Al-Ni shape memory alloys. Intermetallics 11 (9), 927 (2003).

    Article  Google Scholar 

  7. E. Donoso, R. Espinoza, M-J. Diànez, and J-M. Criado: Microcalorimetric study of the annealing hardening mechanism of a Cu-2.8Ni-1.4Si (at%) alloy. Mater. Sci. Eng., A 56, 612 (2012).

    Article  Google Scholar 

  8. R. Monzen and C. Watanabe: Microstructure and mechanical properties of Cu-Ni-Si alloys. Mater. Sci. Eng., A 483–484, 117 (2010).

    Google Scholar 

  9. S. Suzuki, N. Shibutani, K. Mimura, M. Isshiki, and Y. Waseda: Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling. J. Alloys Compd. 417, 116 (2006).

    Article  CAS  Google Scholar 

  10. D. Li, P. Franke, S. Fürtauer, D. Cupid, and H. Flandorfer: The Cu-Sn phase diagram part II: New thermodynamic assessment. Intermetallics 34, 148 (2013).

    Article  CAS  Google Scholar 

  11. S. Satoshi, I. Mikio, S. Shigeo, W. Kazuaki, and T. Takayuki: Extraction of precipitates from age-hardenable Cu-Ti alloys. Mater. Charact. 82, 23 (2013).

    Article  Google Scholar 

  12. S. Nestorović, I. Marković, and D. Marković: Influence of thermomechanical treatment on the hardening mechanisms and structural changes of a cast Cu-6.6 wt.%Ag alloy. Mater. Des. 31, 1644 (2010).

    Article  Google Scholar 

  13. S. Shiro and N. Koji: On quench sensitivity of Cu-Cr alloys. J. Jpn. Inst. Met. Mater. 33, 1155 (1969).

    Article  Google Scholar 

  14. X-M. Zhang, W-J. Liu, S-D. Liu, and M-Z. Zhou: Effect of processing parameters on quench sensitivity of an AA7050 sheet. Mater. Sci. Eng., A 528, 795 (2011).

    Article  Google Scholar 

  15. S-D. Liu, W-J. Liu, Y. Zhang, X-M. Zhang, and Y-L. Deng: Effect of microstructure on the quench sensitivity of AlZnMgCu alloys. J. Alloys Compd. 507, 53 (2010).

    Article  CAS  Google Scholar 

  16. S. Hisashi and K. Motohiro: The T-T-T curve in Cu-Cr alloy. J. Jpn. Inst. Met. Mater. 35, 434 (1971).

    Article  Google Scholar 

  17. Q. Lei, Z. Li, A-Y. Zhu, W-T. Qiu, and S-Q. Liang: The transformation behavior of Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy during isothermal heat treatment. Mater. Charact. 62, 904 (2011).

    Article  CAS  Google Scholar 

  18. L-N. Shen, Z. Li, Z-M. Zhang, Q-Y. Dong, Z. Xiao, Q. Lei, and W-T. Qiu: Effects of silicon and thermo-mechanical process on microstructure and properties of Cu-10Ni-3Al-0.8Si alloy. Mater. Des. 62, 265 (2014).

    Article  CAS  Google Scholar 

  19. F-J. Blatt: Effect of point imperfections on the electrical properties of copper. I. Conductivity. Phys. Rev. 99 (6), 1708 (1955).

    Article  CAS  Google Scholar 

  20. Q. Lei, Z. Li, T. Xiao, Y. Pang, Z-Q. Xiang, W-T. Qiu, and Z. Xiao: A new ultrahigh strength Cu-Ni-Si alloy. Intermetallics 42, 77 (2013).

    Article  CAS  Google Scholar 

  21. W-O. Alexander: Copper-rich nickel-aluminium-copper alloys. Part II—The constitution of the copper-nickel-rich alloys. J. Inst. Met. 30, 425 (1938).

    Google Scholar 

  22. Y-R. Cho, Y-H. Kim, and T-D. Lee: Precipitation hardening and recrystallization in Cu-4% to 7% Ni-3% Al alloys. J. Mater. Sci. 26, 2879 (1991).

    Article  CAS  Google Scholar 

  23. J-S. Robinson, R-L. Cudd, D-A. Tanner, and G-P. Dolan: Quench sensitivity and tensile property inhomogeneity in 7010 forgings. J. Mater. Process. Technol. 119, 261 (2001).

    Article  CAS  Google Scholar 

  24. T. Torma, E-C. Kovács, T. Turmezey, T. Ungár, and I. Kovács: Hardening mechanisms in Al-Sc alloys. J. Mater. Sci. 24, 3924 (1989).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are pleased to acknowledge the financial supply supported by the National Natural Science Foundation of China (51271203), Hunan Provincial Natural Science Foundation of China (11JJ2025), and the Nonferrous Metals Science Foundation of HNG-CSU (YSZN2013CL06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Li, Z., Dong, Q. et al. Microstructure evolution and quench sensitivity of Cu–10Ni–3Al–0.8Si alloy during isothermal treatment. Journal of Materials Research 30, 736–744 (2015). https://doi.org/10.1557/jmr.2015.12

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.12

Navigation