Skip to main content
Log in

Self-organization of Cu–Ag during controlled severe plastic deformation at high temperatures

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Cu90Ag10 alloys were subjected to severe plastic deformation at temperatures ranging from 25 to 400 °C and strain rates ranging from 0.1 to 6.25 s−1 using high-pressure torsion. The deformed samples were characterized by x-ray diffraction, transmission electron microscopy, and atom-probe tomography. A dynamic competition between shear-induced mixing and thermally activated decomposition led to the self-organization of the Cu–Ag system at length scales varying from a few atomic distances at room temperature to ≈50 nm at 400 °C. Steady-state microstructural length scales were minimally affected by varying the strain rate, although at 400 °C, the grain morphology did depend on strain-rate. Our results show that diffusion below 300 °C is dominated by nonequilibrium vacancies, and by comparison with previous Kinetic Monte Carlo simulations [D. Schwen et al., J. Mater. Res. 28, 2687–2693 (2013)], their concentration could be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. A. Gholinia, P.B. Prangnell, and M.V. Markushev: The effect of strain path on the development of deformation structures in severely deformed aluminum alloys processed by ECAE. Acta Mater. 48(5), 1115 (2000).

    CAS  Google Scholar 

  2. K. Nakashima, Z. Horita, M. Nemoto, and T.G. Langdon: Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing. Acta Mater. 46(5), 1589 (1998).

    CAS  Google Scholar 

  3. N. Tsuji, Y. Saito, S-H. Lee, and Y. Minamino: ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials. Adv. Eng. Mater. 5(5), 338 (2003).

    CAS  Google Scholar 

  4. R. Valiev: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3(8), 511 (2004).

    CAS  Google Scholar 

  5. A. Bachmaier, M. Kerber, D. Setman, and R. Pippan: The formation of supersaturated solid solutions in Fe–Cu alloys deformed by high-pressure torsion. Acta Mater. 60(3), 860 (2012).

    CAS  Google Scholar 

  6. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55(12), 4041 (2007).

    CAS  Google Scholar 

  7. B.L. Huang, R.J. Perez, E.J. Lavernia, and M.J. Luton: Formation of supersaturated solid solutions by mechanical alloying. Nanostruct. Mater. 7(1–2), 67 (1996).

    CAS  Google Scholar 

  8. J.Y. Huang, Y.D. Yu, Y.K. Wu, D.X. Li, and H.Q. Ye: Microstructure and nanoscale composition analysis of the mechanical alloying of FeXCu100-X (X = 16, 60). Acta Mater. 45(1), 113 (1997).

    CAS  Google Scholar 

  9. V.V. Popov, E.N. Popova, and A.V. Stolbovskiy: Nanostructuring Nb by various techniques of severe plastic deformation. Mater. Sci. Eng., A 539, 22 (2012).

    CAS  Google Scholar 

  10. X. Quelennec, A. Menand, J.M. Le Breton, R. Pippan, and X. Sauvage: Homogeneous Cu–Fe supersaturated solid solutions prepared by severe plastic deformation. Philos. Mag. 90(9–10), 1179 (2010).

    CAS  Google Scholar 

  11. C.A. Schuh, T.G. Nieh, and H. Iwasaki: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51(2), 431 (2003).

    CAS  Google Scholar 

  12. R.B. Schwarz and C.C. Koch: Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of pure metals and powders of intermetallics. Appl. Phys. Lett. 49(3), 146 (1986).

    CAS  Google Scholar 

  13. T. Klassen, U. Herr, and R.S. Averback: Ballmilling of systems with positive heat of mixing: Effect of temperature in Ag-Cu. Acta Mater. 45(7), 2921 (1997).

    CAS  Google Scholar 

  14. F. Delogu, M. Pintore, S. Enzo, F. Cardellini, V. Contini, A. Montone, and V. Rosato: Mechanical alloying of immiscible elements: Experimental results on Ag-Cu and Co-Cu. Philos. Mag. B 76(4), 651 (1997).

    CAS  Google Scholar 

  15. C. Gente, M. Oehring, and R. Bormann: Formation of thermodynamically unstable solid solutions in the copper-cobalt system by mechanical alloying. Phys. Rev. B: Condens. Matter 48(18), 13244 (1993).

    CAS  Google Scholar 

  16. E. Ma and M. Atzmon: Phase transformations induced by mechanical alloying in binary systems. Mater. Chem. Phys. 39(4), 249 (1995).

    CAS  Google Scholar 

  17. S.N. Arshad, T.G. Lach, M. Pouryazdan, H. Hahn, P. Bellon, S.J. Dillon, and R.S. Averback: Dependence of shear-induced mixing on length scale. Scr. Mater. 68(3–4), 215 (2013).

    CAS  Google Scholar 

  18. M. Pouryazdan, D. Schwen, D. Wang, T. Scherer, H. Hahn, R.S. Averback, and P. Bellon: Forced chemical mixing of immiscible Ag-Cu heterointerfaces using high-pressure torsion. Phys. Rev. B: Condens. Matter Mater. Phys. 86(14), 144302 (2012).

    Google Scholar 

  19. P. Bellon, R.S. Averback, S. Odunuga, Y. Li, P. Krasnochtchekov, and A. Caro: Crossover from superdiffusive to diffusive mixing in plastically deformed solids. Phys. Rev. Lett. 99(11), 110602 (2007).

    CAS  Google Scholar 

  20. Y. Ashkenazy, N.Q. Vo, D. Schwen, R.S. Averback, and P. Bellon: Shear induced chemical mixing in heterogeneous systems. Acta Mater. 60(3), 984 (2012).

    CAS  Google Scholar 

  21. J. Xu, U. Herr, T. Klassen, and R.S. Averback: Formation of supersaturated solid solutions in the immiscible Ni-Ag system by mechanical alloying. J. Appl. Phys. 79(8,Pt. 1), 3935 (1996).

    CAS  Google Scholar 

  22. M. Wang, R.S. Averback, P. Bellon, and S. Dillon: Chemical mixing and self-organization of Nb precipitates in Cu during severe plastic deformation. Acta Mater. 62, 276 (2014).

    CAS  Google Scholar 

  23. M. Wang, N.Q. Vo, M. Campion, T.D. Nguyen, D. Setman, S. Dillon, P. Bellon, and R.S. Averback: Forced atomic mixing during severe plastic deformation: Chemical interactions and kinetically driven segregation. Acta Mater. 66, 1 (2014).

    CAS  Google Scholar 

  24. E. Ma, J.H. He, and P.J. Schilling: Mechanical alloying of immiscible elements: Ag-Fe contrasted with Cu-Fe. Phys. Rev. B: Condens. Matter 55(9), 5542 (1997).

    CAS  Google Scholar 

  25. E. Botcharova, J. Freudenberger, and L. Schultz: Mechanical alloying of copper with niobium and molybdenum. J. Mater. Sci. 39(16–17), 5287 (2004).

    CAS  Google Scholar 

  26. A. Da Pozzo, S. Palmas, A. Vacca, and F. Delogu: On the role of mechanical properties in the early stages of the mechanical alloying of Ag50Cu50 powder mixtures. Scr. Mater. 67(1), 104 (2012).

    Google Scholar 

  27. Z.C. Cordero and C.A. Schuh: Phase strength effects on chemical mixing in extensively deformed alloys. Acta Mater. 82, 123 (2015).

    CAS  Google Scholar 

  28. A.C. Lund and C.A. Schuh: Topological and chemical arrangement of binary alloys during severe deformation. J. Appl. Phys. 95(9), 4815 (2004).

    CAS  Google Scholar 

  29. N.Q. Vo, S. Odunuga, P. Bellon, and R.S. Averback: Forced chemical mixing in immiscible alloys during severe plastic deformation at elevated temperatures. Acta Mater. 57(10), 3012 (2009).

    CAS  Google Scholar 

  30. A. Hohenwarter, M. Faller, B. Rashkova, and R. Pippan: Influence of heat treatment on the microstructural evolution of Al-3 wt.% Cu during high-pressure torsion. Philos. Mag. Lett. 94(6), 342 (2014).

    CAS  Google Scholar 

  31. X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, and M. Murashkin: Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al-Mg alloy. Acta Mater. 72, 125 (2014).

    CAS  Google Scholar 

  32. B.B. Straumal, A.S. Gornakova, O.B. Fabrichnaya, M.J. Kriegel, A.A. Mazilkin, B. Baretzky, A.M. Gusak, and S.V. Dobatkin: Effective temperature of high pressure torsion in Zr-Nb alloys. High Temp. Mater. Processes (Berlin, Ger.) 31(4–5), 339 (2012).

    CAS  Google Scholar 

  33. B.B. Straumal, S.G. Protasova, A.A. Mazilkin, O.A. Kogtenkova, L. Kurmanaeva, B. Baretzky, G. Schutz, A. Korneva, and P. Zieba: SPD-induced changes of structure and magnetic properties in the Cu-Co alloys. Mater. Lett. 98, 217 (2013).

    CAS  Google Scholar 

  34. K. Tugcu, G. Sha, X.Z. Liao, P. Trimby, J.H. Xia, M.Y. Murashkin, Y. Xie, R.Z. Valiev, and S.P. Ringer: Enhanced grain refinement of an Al-Mg-Si alloy by high-pressure torsion processing at 100 °C. Mater. Sci. Eng., A 552, 415 (2012).

    CAS  Google Scholar 

  35. A.P. Zhilyaev, S.N. Sergeev, and T.G. Langdon: Electron backscatter diffraction (EBSD) microstructure evolution in HPT copper annealed at a low temperature. J. Mater. Res. Technol. (2014). Ahead of print.

  36. F. Ren, S.N. Arshad, P. Bellon, R.S. Averback, M. Pouryazdan, and H. Hahn: Sliding wear-induced chemical nanolayering in Cu-Ag, and its implications for high wear resistance. Acta Mater. 72, 148 (2014).

    CAS  Google Scholar 

  37. Y.Z. Tian, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Comparison of microstructures and mechanical properties of a Cu-Ag alloy processed using different severe plastic deformation modes. Mater. Sci. Eng., A 528(13–14), 4331 (2011).

    Google Scholar 

  38. Y.Z. Tian, Z.F. Zhang, and T.G. Langdon: Achieving homogeneity in a two-phase Cu-Ag composite during high-pressure torsion. J. Mater. Sci. 48(13), 4606 (2013).

    CAS  Google Scholar 

  39. Y.Z. Tian, J.J. Li, P. Zhang, S.D. Wu, Z.F. Zhang, M. Kawasaki, and T.G. Langdon: Microstructures, strengthening mechanisms and fracture behavior of Cu-Ag alloys processed by high-pressure torsion. Acta Mater. 60(1), 269 (2012).

    CAS  Google Scholar 

  40. Y.Z. Tian, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Microstructural evolution and mechanical properties of a two-phase Cu-Ag alloy processed by high-pressure torsion to ultrahigh strains. Acta Mater. 59(7), 2783 (2011).

    CAS  Google Scholar 

  41. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta Mater. 47(2), 579 (1999).

    CAS  Google Scholar 

  42. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17(1), 5 (2002).

    CAS  Google Scholar 

  43. C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci. 46(1–2), 1 (2000).

    Google Scholar 

  44. S. Zghal, R. Twesten, F. Wu, and P. Bellon: Electron microscopy nanoscale characterization of ball milled Cu-Ag powders. Part II: Nanocomposites synthesized by elevated temperature milling or annealing. Acta Mater. 50(19), 4711 (2002).

    CAS  Google Scholar 

  45. F. Wu, D. Isheim, P. Bellon, and D.N. Seidman: Nanocomposites stabilized by elevated-temperature ball milling of Ag50Cu50 powders: An atom probe tomographic study. Acta Mater. 54(10), 2605 (2006).

    CAS  Google Scholar 

  46. S. Odunuga, Y. Li, P. Krasnochtchekov, P. Bellon, and R.S. Averback: Forced chemical mixing in alloys driven by plastic deformation. Phys. Rev. Lett. 95(4), 045901 (2005).

    CAS  Google Scholar 

  47. D. Schwen, M. Wang, R.S. Averback, and P. Bellon: Compositional patterning in immiscible alloys subjected to severe plastic deformation. J. Mater. Res. 28(19), 2687 (2013).

    CAS  Google Scholar 

  48. A.P. Zhilyaev and T.G. Langdon: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53(6), 893 (2008).

    CAS  Google Scholar 

  49. P.H.R. Pereira, R.B. Figueiredo, Y. Huang, P.R. Cetlin, and T.G. Langdon: Modeling the temperature rise in high-pressure torsion. Mater. Sci. Eng., A 593, 185 (2014).

    CAS  Google Scholar 

  50. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45(2), 103 (2000).

    CAS  Google Scholar 

  51. A. Einstein: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17, 549 (1905).

    CAS  Google Scholar 

  52. G. Martin and P. Bellon: Driven alloys. Solid State Phys. 50, 189 (1997).

    CAS  Google Scholar 

  53. O.C. Hellman, J.A. Vandenbroucke, J. Rusing, D. Isheim, and D.N. Seidman: Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 6(5), 437 (2000).

    CAS  Google Scholar 

  54. A.L. Patterson: The Scherrer formula for X-Ray particle size determination. Phys. Rev. 56(10), 978 (1939).

    CAS  Google Scholar 

  55. J.E. Hilliard: Conversion of intercept density to grain size. Met. Prog. 85(5), 99 (1964).

    Google Scholar 

  56. R.K. Linde: Lattice parameters of metastable Ag-Cu alloys. J. Appl. Phys. 37(2), 934 (1966).

    CAS  Google Scholar 

  57. R.A. Enrique and P. Bellon: Compositional patterning in systems driven by competing dynamics of different length scale. Phys. Rev. Lett. 84(13), 2885 (2000).

    CAS  Google Scholar 

  58. M. Militzer, W.P. Sun, and J.J. Jonas: Modeling the effect of deformation-induced vacancies on segregation and precipitation. Acta Metall. Mater. 42(1), 133 (1994).

    CAS  Google Scholar 

  59. S.H. Song, X.M. Chen, and L.Q. Weng: Solute diffusion during high-temperature plastic deformation in alloys. Mater. Sci. Eng., A 528(24), 7196 (2011).

    CAS  Google Scholar 

  60. H. Mecking and Y. Estrin: The effect of vacancy generation on plastic deformation. Scr. Metall. 14(7), 815 (1980).

    CAS  Google Scholar 

  61. Y. Chen, M. Bibole, R. Le Hazif, and G. Martin: Ball-milling-induced amorphization in NixZry compounds: A parametric study. Phys. Rev. B 48(1), 14 (1993).

    CAS  Google Scholar 

  62. The equilibrium vacancy concentration, like the vacancy jump frequency, is influenced by interphase boundaries, however, it has been calculated in the simulations.

  63. N.Q. Vo, J. Schaefer, R.S. Averback, K. Albe, Y. Ashkenazy, and P. Bellon: Reaching theoretical strengths in nanocrystalline Cu by grain boundary doping. Scr. Mater. 65(8), 660 (2011).

    CAS  Google Scholar 

  64. E.I. Galindo-Nava and P.E.J. Rivera-Diaz-del-Castillo: Thermostatistical modelling of hot deformation in FCC metals. Int. J. Plast. 47, 202 (2013).

    CAS  Google Scholar 

  65. S.I. Hong and H.J. Kwon: Superplasticicity of Cu–16 at.% Ag microcomposites. J. Mater. Res. 16(06), 1822 (2001).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial support from National Science Foundation (DMR 10-05813) to carry out this research. The APT was performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT), which is supported by the National Science Foundation’s MRSEC Program (DMR-1121262). The research at TUD and KIT was financially supported by Deutsche Forschungsgemeinschaft (HA1344/22-2). The Austrian Science Fund FWF within the project No T512-N20 is thankfully acknowledged for supporting D.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen J. Dillon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, S.N., Lach, T.G., Ivanisenko, J. et al. Self-organization of Cu–Ag during controlled severe plastic deformation at high temperatures. Journal of Materials Research 30, 1943–1956 (2015). https://doi.org/10.1557/jmr.2015.119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.119

Navigation