Skip to main content
Log in

Improved photocatalytic reactivity of ZnO photocatalysts decorated with Ni and their magnetic recoverability

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, the Ni-decorated ZnO photocatalysts with magnetic separable characteristics were prepared by a simple replacing-hydrothermal process for the first time. The as-synthesized composites were characterized by powder x-ray diffraction, UV–visible diffuse reflectance spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscopy, and so on. It is found that the introduction of Ni (as Ni0 and Ni2+ forms) turned the morphologies of ZnO photocatalysts, enhanced photoabsorption in a visible light region, and increased amount of surface adsorbed oxygen. The photodegradation test of anthraquinone dye (reactive brilliant blue KN-R) indicated that the Ni-decorated ZnO photocatalysts have better activities as compared to the ZnO reference. The enhancement of photocatalytic activity of Ni-decorated ZnO photocatalysts can be attributed to the existence of Ni2+ doping, Ni0/ZnO heterostructure, and abundant-adsorbed oxygen (as the electronic scavenges), which caused efficient separation of electron–hole pairs in Ni-decorated ZnO photocatalysts. Furthermore, the introduction of metallic Ni also endued ZnO with good magnetic recoverability. The re-collected experiments by external magnetic field indicated that Ni-decorated ZnO as a magnetically recoverable photocatalyst is acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. S.K. Asl, S.K. Sadrnezhaad, and M. Kianpourrad: The seeding effect on the microstructure and photocatalytic properties of ZnO nano powders. Mater. Lett. 64(18), 1935–1938 (2010).

    CAS  Google Scholar 

  2. C. Wu, L. Shen, Y.C. Zhang, and Q. Huang: Solvothermal synthesis of Cr-doped ZnO nanowires with visible light-driven photocatalytic activity. Mater. Lett. 65(12), 1794–1796 (2011).

    CAS  Google Scholar 

  3. J.H. Zeng, B.B. Jin, and Y.F. Wang: Facet enhanced photocatalytic effect with uniform single-crystalline zinc oxide nanodisks. Chem. Phys. Lett. 472(1–3), 90–95 (2009).

    CAS  Google Scholar 

  4. C. Hariharan: Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Appl. Catal., A 304, 55–61 (2006).

    CAS  Google Scholar 

  5. T. Tong, J. Zhang, B. Tian, F. Chen, and D. He: Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J. Hazard. Mater. 155(3), 572–579 (2008).

    CAS  Google Scholar 

  6. V. Brezová, A. Blazková, L. Karpinsky, J. Grosková, B. Havlínová, and V. Jorík: Phenol decomposition using Mn+/TiO2 photocatalysts supported by the sol–gel technique on glass fibres. J. Photochem. Photobiol., A 109(2), 177–183 (1997).

    Google Scholar 

  7. M.S. Nahar, K. Hasegawa, and S. Kagaya: Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles. Chemosphere 65(11), 1976–1982 (2006).

    CAS  Google Scholar 

  8. P.S. Mukherjee and A.K. Ray: Major challenges in the design of a large-scale photocatalytic reactor for water treatment. Chem. Eng. Technol. 22(3), 253–260 (1999).

    CAS  Google Scholar 

  9. I. Arslan, I.A. Balcioglu, and D.W. Bahnemann: Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO2-photocatalysts. Appl. Catal., B 26(3), 193–206 (2000).

    CAS  Google Scholar 

  10. S.Q. Liu: Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants. Environ. Chem. Lett. 10(3), 209–216 (2012).

    CAS  Google Scholar 

  11. H. Kominami, H. Kumamoto, Y. Kera, and B. Ohtani: Immobilization of highly active titanium(IV) oxide particles: A novel strategy of preparation of transparent photocatalytic coatings. Appl. Catal., B 30(3–4), 329–335 (2001).

    CAS  Google Scholar 

  12. I.M. Arabatzis, S. Antonaraki, T. Stergiopoulos, A. Hiskia, E. Papaconstantinou, M.C. Bernard, and P. Falaras: Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3,5-dichlorophenol degradation. J. Photochem. Photobiol., A 149(1–3), 237–245 (2002).

    CAS  Google Scholar 

  13. N.B. Jackson, C.M. Wang, Z. Luo, J. Schwitzgebel, J.G. Ekerdt, J.R. Brock, and A. Heller: Attachment of TiO2 powders to hollow glass microbeads: Activity of the TiO2-coated beads in the photoassisted oxidation of ethanol to acetaldehyde. J. Electrochem. Soc. 138(12), 3660–3664 (1991).

    CAS  Google Scholar 

  14. M. Bideau, B. Claudel, C. Dubien, L. Faure, and H. Kazouan: On the “immobilization” of titanium dioxide in the photocatalytic oxidation of spent waters. J. Photochem. Photobiol., A 91(2), 137–144 (1995).

    CAS  Google Scholar 

  15. R.L. Pozzo, M.A. Baltanas, and A.E. Cassano: Supported titanium oxide as photocatalyst in water decontamination: State of the art. Catal. Today 39(3), 219–235 (1997).

    CAS  Google Scholar 

  16. S. Horikoshi, N. Watanabe, H. Onishi, H. Hidaka, and N. Serpone: Photodecomposition of a nonylphenol polyethoxylate surfactant in a cylindrical photoreactor with TiO2 immobilized fiberglass cloth. Appl. Catal., B 37(2), 117–129 (2002).

    CAS  Google Scholar 

  17. M. Anpo, G.Z. Shu, H. Mishima, M. Matsuoka, and H. Yamashita: Design of photocatalysts encapsulated within the zeolite framework and cavities for the decomposition of NO into N2 and O2 at normal temperature. Catal. Today 39(3), 159–168 (1997).

    CAS  Google Scholar 

  18. H. Pang, Y.C. Li, L.N. Guan, Q.Y. Lu, and F. Gao: TiO2/Ni nanocomposites: Biocompatible and recyclable magnetic photocatalysts. Catal. Commun. 12(7), 611–615 (2011).

    CAS  Google Scholar 

  19. D. Beydoun, R. Amal, G. Low, and S. McEvoy: Novel Photocatalyst: Titania-coated magnetite. Activity and photodissolution. J. Phys. Chem. B 104(18), 4387–4396 (2000).

    CAS  Google Scholar 

  20. D. Beydoun, R. Amal, J. Scott, G. Low, and S. McEvoy: Studies on the mineralization and separation efficiencies of a magnetic photocatalyst. Chem. Eng. Technol. 24(7), 745–748 (2001).

    CAS  Google Scholar 

  21. D. Beydoun and R. Amal: Implications of heat treatment on the properties of a magnetic iron oxide–titanium dioxide photocatalyst. Mater. Sci. Eng., B 94(1), 71–81 (2002).

    Google Scholar 

  22. F. Chen, Y.D. Xie, J.C. Zhao, and G.X. Lu: Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation. Chemosphere 44(5), 1159–1168 (2001).

    CAS  Google Scholar 

  23. Y. Gao, B.H. Chen, H.L. Li, and Y.X. Ma: Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties. Mater. Chem. Phys. 80(1), 348–355 (2003).

    CAS  Google Scholar 

  24. S. Lee, J. Drwiega, C. Wu, D. Mazyck, and W.M. Sigmund: Anatase TiO2 nanoparticle coating on barium ferrite using titanium bis-ammonium lactato dihydroxide and its use as a magnetic photocatalyst. Chem. Mater. 16(6), 1160–1164 (2004).

    CAS  Google Scholar 

  25. S. Rana and R.D.K. Misra: The anti-microbial activity of titania-nickel ferrite composite nanoparticles. JOM 57(12), 65–69 (2005).

    CAS  Google Scholar 

  26. W. Fu, H. Yang, L. Chang, M. Li, Hari-Bala, and G. Zou: Anatase TiO2 nanolayer coating on strontium ferrite nanoparticles for magnetic photocatalyst. Colloids Surf., A 289(1–3), 47–52 (2006).

    CAS  Google Scholar 

  27. W. Fu, H. Yang, M. Li, L. Chang, Q. Yu, J. Xu, and G. Zou: Preparation and photocatalytic characteristics of core-shell structure TiO2/BaFe12O19 nanoparticles. Mater. Lett. 60(21–22), 2723–2727 (2006).

    CAS  Google Scholar 

  28. L. Zhang, Z. Wang, L. Zhou, M. Shang, and S. Sun: Fe3O4 coupled BiOCl: A highly efficient magnetic photocatalyst. Appl. Catal., B 90(3–4), 458–462 (2009).

    CAS  Google Scholar 

  29. X. Yu, S. Liu, and J. Yu: Superparamagnetic γ-Fe2O3@SiO2@TiO2 composite microspheres with superior photocatalytic properties. Appl. Catal., B 104(1–2),12–20 (2011).

    CAS  Google Scholar 

  30. D. Beydoun, R. Amal, G. Low, and S. McEvoy: Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide. J. Mol. Catal. A: Chem. 180(1–2), 193–200 (2002).

    CAS  Google Scholar 

  31. S. Abramson, L. Srithammavanh, J.M. Siaugue, O. Horner, X. Xu, and V. Cabuil: Nanometric core-shell-shell γ-Fe2O3/SiO2/TiO2 particles. J. Nanopart. Res. 11(2), 459–465 (2009).

    CAS  Google Scholar 

  32. C. Wang, Y. Ao, P. Wang, J. Hou, and J. Qian: A facile method for the preparation of titania-coated magnetic porous silica and its photocatalytic activity under UV or visible light. Colloids Surf., A 360(1–3), 184–189 (2010).

    CAS  Google Scholar 

  33. S. Singh, N. Rama, and M. Ramachandra Rao: Influence of d-d transition bands on electrical resistivity in Ni doped polycrystalline ZnO. Appl. Phys. Lett. 88(22), 222111 (2006).

    Google Scholar 

  34. J. Liu, M. Yu, and W. Zhou: Fabrication of Mn-doped ZnO diluted magnetic semiconductor nanostructures by chemical vapor deposition. J. Appl. Phys. 99(8), 08M119 (2006).

    Google Scholar 

  35. C. Hsu, S. Chang, H. Hung, Y. Lin, C. Huang, Y. Tseng, and I. Chen: Indium-diffused ZnO nanowires synthesized on ITO-buffered Si substrate. Nanotechnology 17(2), 516–519 (2006).

    CAS  Google Scholar 

  36. B. Cheng, Y. Xiao, G. Wu, and L. Zhang: Controlled growth and properties of one-dimensional ZnO nanostructures with Ce as activator/dopant. Adv. Funct. Mater. 14(9), 913–919 (2004).

    CAS  Google Scholar 

  37. U. Pal, J. Garcia-Serrano, G. Casarrubias-Segura, N. Koshizaki, T. Sasaki, and S. Terahuchi: Structure and optical properties of M/ZnO (M=Au, Cu, Pt) nanocomposites. Sol. Energy Mater. Sol. Cells 81(3), 339–348 (2004).

    CAS  Google Scholar 

  38. C. Xu, L. Cao, G. Su, W. Liu, X. Qu, and Y. Yu: Preparation, characterization and photocatalytic activity of Co-doped ZnO powders. J. Alloys Compd. 497(1–2), 373–376 (2010).

    CAS  Google Scholar 

  39. X.M. Sun, X. Chen, Z.X. Deng, and Y.D. Li: A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Mater. Chem. Phys. 78(1), 99–104 (2002).

    CAS  Google Scholar 

  40. Z.H. Li, Y.X. Luan, Q.Z. Wang, G.S. Zhuang, Y.X. Qi, Y. Wang, and C.G. Wang: ZnO nanostructure construction on zinc foil: The concept from an ionic liquid precursor aqueous solution. Chem. Commun. 41, 6273–6275 (2009).

    Google Scholar 

  41. A.A. Vostrikov, O.N. Fedyaeva, A.V. Shishkin, and M.Ya. Sokol: ZnO nanoparticles formation by reactions of bulk Zn with H2O and CO2 at sub- and supercritical conditions: II. Morphology and properties of nanoparticles. J. Supercrit. Fluids 48(2), 161–166 (2009).

    CAS  Google Scholar 

  42. H. Srivastava, P. Tiwari, A.K. Srivastava, S. Porwal, and S.K. Deb: Water-vapour-assisted growth of ZnO nanowires on a zinc foil and the study of the effect of synthesis parameters. Semicond. Sci. Technol. 26(8), 085030–085038 (2011).

    Google Scholar 

  43. W.J. Li, E.W. Shi, W.Z. Zhong, and Z.W. Yin: Growth mechanism and growth habit of oxide crystals. J. Cryst. Growth 203(1–2), 186–196 (1999).

    CAS  Google Scholar 

  44. B.G. Wang, E.W. Shi, and W.Z. Zhong: Understanding and controlling the morphology of ZnO crystallites under hydrothermal conditions. Cryst. Res. Technol. 32(5), 659–667 (1997).

    CAS  Google Scholar 

  45. V.S. Fomenko: Emission Properties of Materials: Handbook, 4th ed. (in Russian), (Naukova Dumka, Kiev, 1981).

    Google Scholar 

  46. P. Prieto, V. Nistor, K. Nouneh, M. Oyama, M. Abd-Lefdil, and R. Díaz: XPS study of silver, nickel and bimetallic silver–nickel nanoparticles prepared by seed-mediated growth. Appl. Surf. Sci. 258(22), 8807–8813 (2012).

    CAS  Google Scholar 

  47. M.W. Roberts and R.St.C. Smart: The defect structure of nickel oxide surfaces as revealed by photoelectron spectroscopy. J. Chem. Soc., Faraday Trans. 1 80(11), 2957–2968 (1984).

    CAS  Google Scholar 

  48. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben: Handbook of X-ray Photoelectron Spectroscopy (Perkin Elmer, Eden Prairie, 1992); pp. 84–85.

    Google Scholar 

  49. G.H. Yu, L.R. Zeng, F.W. Zhu, C.L. Chai, and W.Y. Lai: Magnetic properties and x-ray photoelectron spectroscopy study of NiO/NiFe films prepared by magnetron sputtering. J. Appl. Phys. 90(8), 4039–4043 (2001).

    CAS  Google Scholar 

  50. Z.G. Yin, N.F. Chen, F. Yang, S.L. Song, C.L. Chai, J. Zhong, H.J. Qian, and K. Ibrahim: Structural, magnetic properties and photoemission study of Ni-doped ZnO. Solid State Commun. 135(7), 430–433 (2005).

    CAS  Google Scholar 

  51. A.F. Carley, S.D. Jackson, J.N. O’Shea, and M.W. Roberts: The formation and characterisation of Ni3+–an X-ray photoelectron spectroscopic investigation of potassium-doped Ni(110)–O. Surf. Sci. 440(3), 868–874 (1999).

    Google Scholar 

  52. L.M. Moroney, R.St.C. Smart, and M.W. Roberts: Studies of the thermal decomposition of β-NiO(OH) and nickel peroxide by X-ray photoelectron spectroscopy. J. Chem. Soc., Faraday Trans. 1 I79(8), 1769–1778 (1983).

    Google Scholar 

  53. J. Iqbal, B.Q. Wang, X.F. Liu, D.P. Yu, B. He, and R.H. Yu: Oxygen-vacancy-induced green emission and room-temperature ferromagnetism in Ni-doped ZnO nanorods. New J. Phys. 11(6), 063009 (2009).

    Google Scholar 

  54. J. Jiang, X.T. Wang, L.P. Zhu, L.Q. Zhang, Z.G. Yang, and Z.Z. Ye: Electrical and magnetic properties of ZnNiO thin films deposited by pulse laser deposition. J. Zhejiang Univ., Sci., A (Appl. Phys. Eng.) 12(7), 561–566 (2011).

    CAS  Google Scholar 

  55. T.A. Dar, A. Agrawal, and P. Sen: Pulsed laser deposited nickel doped zinc oxide thin Films: Structural and optical investigations. J. Nano-Electron. Phys. 5(2), 02024 (2013).

    Google Scholar 

  56. I.L. Marta: Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Appl. Catal., B 23(2–3), 89–114 (1999).

    Google Scholar 

  57. A. Fujishima, T.N. Rao, and D.A. Tryk: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1(1), 1–21 (2000).

    CAS  Google Scholar 

  58. L.Q. Jing, B.Q. Wang, B.F. Xin, S.D. Li, K.Y. Shi, W.M. Cai, and H.G. Fu: Investigations on the surface modification of ZnO nanoparticle photocatalyst by depositing Pd. J. Solid State Chem. 177(11), 4221–4227 (2004).

    CAS  Google Scholar 

  59. H.G. Kim, P.H. Borse, W. Choi, and J.S. Lee: Photocatalytic nanodiodes for visible-light photocatalysis. Angew. Chem., Int. Ed. 44(29), 4585–4589 (2005).

    CAS  Google Scholar 

  60. B. Donkova, D. Dimitrov, M. Kostadinov, E. Mitkova, and D. Mehandjiev: Catalytic and photocatalytic activity of lightly doped catalysts M: ZnO (M=Cu, Mn). Mater. Chem. Phys. 123(2–3), 563–568 (2010).

    CAS  Google Scholar 

  61. Y. Kanai: Admittance spectroscopy of Cu-doped ZnO crystals. Jpn. J. Appl. Phys. 30(4R), 703–707 (1991).

    CAS  Google Scholar 

  62. H.C. Ma, K. Teng, Y.H. Fu, Y. Song, Y.W. Wang, and X.L. Dong: Synthesis of visible-light responsive Sn-SnO2/C photocatalyst by simple carbothermal reduction. Energy Environ. Sci. 4(8), 3067–3074 (2011).

    CAS  Google Scholar 

  63. A.L. Linsebigler, G.Q. Lu, and J.T. Yates: Photocatalysis on TiO2 Surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995).

    CAS  Google Scholar 

  64. X.Z. Li and F.B. Li: Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol. 35(11), 2381–2387 (2001).

    CAS  Google Scholar 

  65. M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W.A. Adeagbo, W. Hergert, and A. Ernst: Defect-induced magnetic order in pure ZnO films. Phys. Rev. B 80(3), 035331 (2009).

    Google Scholar 

  66. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena: Vacancy-induced magnetism in ZnO thin films and nanowires. Phys. Rev. B 77(20), 205411 (2008).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by The National Natural Science Foundation of China (21243005, 21476033), Science & Technology Foundation of Liaoning of China (201102011), Program for Key Science & Technology Platform in Universities of Liaoning Province, Program for Liaoning Excellent Talents in University (LR2014013), and Science & Technology Public-Benefit Foundation of Liaoning of China ([2011]49).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongchao Ma or Xiaoli Dong.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Liu, Q., Fu, Y. et al. Improved photocatalytic reactivity of ZnO photocatalysts decorated with Ni and their magnetic recoverability. Journal of Materials Research 30, 1902–1913 (2015). https://doi.org/10.1557/jmr.2015.115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.115

Navigation