Skip to main content
Log in

Novel approach for the synthesis of Mg(OH)2 nanosheets and lamellar MgO nanostructures and their ultra-high adsorption capacity for Congo red

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A phase transfer method was developed to prepare Mg(OH)2 nanosheets and a subsequent adsorption–calcination process was followed to obtain lamellar MgO nanostructures. The as-prepared MgO nanosheets also showed a superior adsorption property of Congo red. Transmission electron microscopy and x-ray diffractometer results indicated that the as-obtained Mg(OH)2 was plate-shaped with a hexagonal crystal structure where MgO possessed a lamellar structure with a cubic phase. The maximum adsorption capacities of Mg(OH)2 and MgO were reached up to 1820 and 2650 mg g−1, respectively. The high adsorption capacity might be related to the particle geometry and large surface area (87.97 m2 g−1 for Mg(OH)2 and 132.31 m2 g−1 for MgO). The adsorbents can be easily regenerated for five times without any significant loss in their adsorption property. The adsorption behaviors of the Mg(OH)2 and MgO adsorbents showed that the adsorption kinetics and isotherms were in good agreement with pseudo-second-order rate equation and Freundlich adsorption model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

REFERENCES

  1. G.E. Shter, H. Behar-Levy, V. Gelman, G.S. Grader, and D. Avnir: Organically doped metals—A new approach to metal catalysis: Enhanced Ag-catalyzed oxidation of methanol. Adv. Funct. Mater. 17 (6), 913 (2007).

    Article  CAS  Google Scholar 

  2. R. Ahmad and R. Kumar: Adsorptive removal of Congo red dye from aqueous solution using bael shell carbon. Appl. Surf. Sci. 257 (5), 1628 (2010).

    Article  CAS  Google Scholar 

  3. G. Zou, W. Chen, R. Liu, and Z. Xu: Morphology-tunable synthesis and characterizations of Mg(OH)2 films via a cathodic electrochemical process. Mater. Chem. Phys. 107 (1), 85 (2008).

    Article  CAS  Google Scholar 

  4. T.I. Liakos and N.K. Lazaridis: Melanoidins removal from simulated and real wastewaters by coagulation and electro-flotation. Chem. Eng. J. 242, 269 (2014).

    Article  CAS  Google Scholar 

  5. K. Turhan, I. Durukan, S.A. Ozturkcan, and Z. Turgut: Decolorization of textile basic dye in aqueous solution by ozone. Dyes Pigm. 92 (3), 897 (2012).

    Article  CAS  Google Scholar 

  6. S. Yu, M. Liu, M. Ma, M. Qi, Z. Lü, and C. Gao: Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes. J. Membr. Sci. 350 (1–2), 83 (2010).

    Article  CAS  Google Scholar 

  7. X. Gao, F. Xiao, C. Yang, J. Wang, and X. Su: Hydrothermal fabrication of W18O49 nanowire networks with superior performance for water treatment. J. Mater. Chem. A 1, 5831 (2013).

    Article  CAS  Google Scholar 

  8. T. Hao, C. Yang, X. Rao, J. Wang, C. Niu, and X. Su: Facile additive-free synthesis of iron oxide nanoparticles for efficient adsorptive removal of Congo red and Cr (VI). Appl. Surf. Sci. 292, 174 (2013).

    Article  Google Scholar 

  9. B. Wang, H. Wu, L. Yu, R. Xu, and T.T. Lim: Template-free formation of uniform urchin-like a-FeOOH hollow spheres with superior capability for water treatment. Adv. Mater. 24 (8), 1111 (2012).

    Article  CAS  Google Scholar 

  10. B. Cheng, Y. Le, W. Cai, and J. Yu: Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. J. Hazard. Mater. 185 (2–3), 889 (2011).

    Article  CAS  Google Scholar 

  11. L. Kumari, W.Z. Li, C.H. Vannoy, R.M. Leblanc, and D.Z. Wang: Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO. Ceram. Int. 35 (8), 3355 (2009).

    Article  CAS  Google Scholar 

  12. J. Hu, Z. Song, L. Chen, H. Yang, J. Li, and R. Richards: Adsorption properties of MgO (111) nanoplates for the dye pollutants from wastewater. J. Chem. Eng. Data 55 (9), 3742 (2010).

    Article  CAS  Google Scholar 

  13. L. Todan, T. Dascalescu, S. Preda, C. Andronescu, C. Munteanu, D.C. Culita, A. Rusu, R. State, and M. Zaharescu: Porous nanosized oxide powders in the MgO-TiO2 binary system obtained by sol–gel method. Ceram. Int. 40 (10), 15693 (2014).

    Article  CAS  Google Scholar 

  14. Z. Bouberka, K. Bentaleb, K.A. Benabbou, and U. Maschke: Adsorption of two dyes by Mg(OH)2: Procion blue HB and Remazol brilliant blue R. Springer Proc. Phys. 155, 463 (2014).

    Article  CAS  Google Scholar 

  15. N.K. Nga, P.T. Hong, T.D. Lam, and T.Q. Huy: A facile synthesis of nanostructured magnesium oxide particles for enhanced adsorption performance in reactive blue 19 removal. J. Colloid Interface Sci. 398, 210 (2013).

    Article  CAS  Google Scholar 

  16. C.Y. Cao, J. Qu, F. Wei, H. Liu, and W.G. Song: Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions. ACS Appl. Mater. Interfaces 4 (8), 4283 (2012).

    Article  CAS  Google Scholar 

  17. Y. Li, C. Yang, J. Ge, C. Sun, J. Wang, and X. Su: A general microwave-assisted two-phase strategy for nanocrystals synthesis. J. Colloid Interface Sci. 407, 296 (2013).

    Article  CAS  Google Scholar 

  18. W.F. Giauque and R.C. Archibald: The entropy of water from the third law of thermodynamics. The dissociation pressure and calorimetric heat of the reaction Mg(OH)2 = MgO + H2O. the heat capacities of Mg(OH)2 and MgO from 20 to 300°K. J. Am. Chem. Soc. 59 (3), 561 (1937).

    Article  CAS  Google Scholar 

  19. S. Zhang, C. Deng, F.L. Liu, Q. Wu, M. Zhang, F.L. Meng, and H. Gao: Impacts of in situ carbon coating on the structural, morphological and electrochemical characteristics of Li2MnSiO4 prepared by a citric acid assisted sol–gel method. J. Electroanal. Chem. 689, 88 (2013).

    Article  CAS  Google Scholar 

  20. N.C.S. Selvam, R.T. Kumar, L.J. Kennedy, and J.J. Vijaya: Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures. J. Alloys Compd. 509 (41), 9809 (2011).

    Article  CAS  Google Scholar 

  21. M.A. Alavi and A. Morsali: Syntheses and characterization of Mg(OH)2 and MgO nanostructures by ultrasonic method. Ultrason. Sonochem. 17 (2), 441 (2010).

    Article  CAS  Google Scholar 

  22. X-Y. Yu, T. Luo, Y. Jia, Y-X. Zhang, J-H. Liu, and X-J. Huang: Porous hierarchically micro-/nanostructured MgO: Morphology control and their excellent performance in As (III) and As (V) removal. J. Phys. Chem. C 115 (45), 22242 (2011).

    Article  CAS  Google Scholar 

  23. M. Rezaei, M. Khajenoori, and B. Nematollahi: Synthesis of high surface area nanocrystalline MgO by pluronic P123 triblock copolymer surfactant. Powder Technol. 205 (1–3), 112 (2011).

    Article  CAS  Google Scholar 

  24. L. Ai, H. Yue, and J. Jiang: Sacrificial template-directed synthesis of mesoporous manganese oxide architectures with superior performance for organic dye adsorption. Nanoscale 4 (17), 5401 (2012).

    Article  CAS  Google Scholar 

  25. H. Dong, Z. Du, Y. Zhao, and D. Zhou: Preparation of surface modified nano-Mg(OH)2 via precipitation method. Powder Technol. 198 (3), 325 (2010).

    Article  CAS  Google Scholar 

  26. A.M. Ruminski, K-J. Jeon, and J.J. Urban: Size-dependent CO2 capture in chemically synthesized magnesium oxide nanocrystals. J. Mater. Chem. 21 (31), 11486 (2011).

    Article  CAS  Google Scholar 

  27. X. Li, W. Xiao, G. He, W. Zheng, N. Yu, and M. Tan: Pore size and surface area control of MgO nanostructures using a surfactant-templated hydrothermal process: High adsorption capability to azo dyes. Colloids Surf., A 408, 79 (2012).

    Article  CAS  Google Scholar 

  28. P. Tian, X.Y. Han, G.L. Ning, H.X. Fang, J.W. Ye, W.T. Gong, and Y. Lin: Synthesis of porous hierarchical MgO and its superb adsorption properties. ACS Appl. Mater. Interfaces 5 (23), 12411 (2013).

    Article  CAS  Google Scholar 

  29. J. Huang, W. Chen, W. Zhao, Y. Li, X. Li, and C. Chen: One-dimensional chainlike arrays of Fe3O4 hollow nanospheres synthesized by aging iron nanoparticles in aqueous solution. J. Phys. Chem. C 113 (28), 12067 (2009).

    Article  CAS  Google Scholar 

  30. L. Wang, J. Li, Z. Wang, L. Zhao, and Q. Jiang: Low-temperature hydrothermal synthesis of α-Fe/Fe3O4 nanocomposite for fast Congo red removal. Dalton Trans. 42 (7), 2572 (2013).

    Article  CAS  Google Scholar 

  31. T. Zhu, J.S. Chen, and X.W. Lou: Highly efficient removal of organic dyes from waste water using hierarchical NiO spheres with high surface area. J. Phys. Chem. C 116 (12), 6873 (2012).

    Article  CAS  Google Scholar 

  32. Z. Zhang, Y. Shan, J. Wang, H. Ling, S. Zang, W. Gao, Z. Zhao, and H. Zhang: Investigation on the rapid degradation of Congo red catalyzed by activated carbon powder under microwave irradiation. J. Hazard. Mater. 147 (1), 325 (2007).

    Article  CAS  Google Scholar 

  33. W. Cai, J. Yu, and M. Jaroniec: Template-free synthesis of hierarchical spindle-like γ-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water. J. Mater. Chem. 20 (22), 4587 (2010).

    Article  CAS  Google Scholar 

  34. K.Y. Chong, C.H. Chia, S. Zakaria, and M.S. Sajab: Vaterite calcium carbonate for the adsorption of Congo red from aqueous solutions. J. Environ. Chem. Eng. 2 (4), 2156 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (51174174), Excellent Talents in Xinjiang Province (2013721015), and Postgraduate Education Innovation Project of Xinjiang Province (XJGRI2014016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xintai Su.

Additional information

Contributing Editor: Edson Roberto Leite

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Niu, C., Zhen, X. et al. Novel approach for the synthesis of Mg(OH)2 nanosheets and lamellar MgO nanostructures and their ultra-high adsorption capacity for Congo red. Journal of Materials Research 30, 1639–1647 (2015). https://doi.org/10.1557/jmr.2015.113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.113

Navigation