Skip to main content
Log in

The role of temperature in the strengthening of Cu–Al alloys processed by surface mechanical attrition treatment

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present work, Cu–Al alloys were processed by surface mechanical attrition treatment (SMAT) under both room and liquid nitrogen temperature (LNT) conditions. In contrast to room temperature (RT) SMAT, dynamic recovery and recrystallization were largely suppressed during the LNT process. A gradient microstructure was obtained due to the gradient strain and strain rate impacted onto the sample. Microhardness measurement showed that the hardness values gradually decreased from the top surface to the central region. The local hardness of the top surface layer of the LNT and RT SMAT Cu–4.5% Al samples reached maximum values of 1.52 and 1.28 GPa, respectively. The Cu–4.5% Al alloy exhibited an improved yield strength of ∼496 MPa and a higher ductility (compared with literature data of Cu–Al alloys synthesized traditional severe plastic deformation methods) of 15.4% after the LNT SMAT process. A brittle-ductile failure pattern was easily distinguished after fracture. Moreover, the LNT SMAT is a low-cost process with high productivity and can be applied to various types of metallic production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

REFERENCES

  1. R. Jahadi, M. Sedighi, and H. Jahed: ECAP effect on the micro-structure and mechanical properties of AM30 magnesium alloy. Mater. Sci. Eng., A 593, 178 (2014).

    Article  CAS  Google Scholar 

  2. X.H. An, Q.Y. Lin, S.D. Wu, and Z.F. Zhang: Microstructural evolution and shear fracture of Cu-16 at.% Al alloy induced by equal channel angular pressing. Mater. Sci. Eng., A 527, 4510 (2010).

    Article  Google Scholar 

  3. A.P. Zhilyaev, A.A. Gimazov, G.I. Raab, and T.G. Langdon: Using high-pressure torsion for the cold-consolidation of copper chips produced by machining. Mater. Sci. Eng., A 486, 123 (2008).

    Article  Google Scholar 

  4. Y.S. Li, N.R. Tao, and K. Lu: Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 56, 230 (2008).

    Article  CAS  Google Scholar 

  5. Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu: Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv. Mater. 18, 2949 (2006).

    Article  CAS  Google Scholar 

  6. E. Ma: Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 49, 663 (2003).

    Article  CAS  Google Scholar 

  7. C.C. Koch: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49, 657 (2003).

    Article  CAS  Google Scholar 

  8. K. Lu and J. Lu: Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng., A 375, 38 (2004).

    Article  Google Scholar 

  9. Y.M. Wang, K. Wang, D. Pan, K. Lu, K.J. Hemker, and E. Ma: Microsample tensile testing of nanocrystalline copper. Scr. Mater. 48, 1581 (2003).

    Article  CAS  Google Scholar 

  10. K.Y. Zhu, A. Vassel, F. Brisset, K. Lu, and J. Lu: Nanostructure formation mechanism of α-titanium using SMAT. Acta Mater. 52, 4101 (2004).

    Article  CAS  Google Scholar 

  11. M. Wen, G. Liu, J.F. Gu, W.M. Guan, and J. Lu: The tensile properties of titanium processed by surface mechanical attrition treatment. Surf. Coat. Technol. 202, 4728 (2008).

    Article  CAS  Google Scholar 

  12. N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, and K. Lu: An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 50, 4603 (2002).

    Article  CAS  Google Scholar 

  13. Z.B. Wang, J. Lu, and K. Lu: Wear and corrosion properties of a low carbon steel processed by means of SMAT followed by lower temperature chromizing treatment. Surf. Coat. Technol. 201, 2796 (2006).

    Article  CAS  Google Scholar 

  14. K.A. Darling, M.A. Tschopp, A.J. Roberts, J.P. Ligda, and L.J. Kecskes: Enhancing grain refinement in polycrystalline materials using surface mechanical attrition treatment at cryogenic temperatures. Scr. Mater. 69, 461 (2013).

    Article  CAS  Google Scholar 

  15. A. Rohatgi, K.S. Vecchio, and G.T. Gray, III: A metallographic and quantitative analysis of the influence of stacking fault energy on shock-hardening in Cu and Cu–Al alloys. Acta Mater. 49, 427 (2001).

    Article  CAS  Google Scholar 

  16. K. Wang, N.R. Tao, G. Liu, J. Lu, and K. Lu: Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Mater. 54, 5281 (2006).

    Article  CAS  Google Scholar 

  17. J.L. Hay and G.M. Pharr: Instrumented indentation testing. In ASM Handbook, Vol. 8, (ASM International, Ohio, 2000); p. 232.

    Google Scholar 

  18. L. Waltz, D. Retraint, A. Roos, and P. Olier: Combination of surface nanocrystallization and co-rolling: Creating multilayer nanocrystalline composites. Scr. Mater. 60, 21 (2009).

    Article  CAS  Google Scholar 

  19. L. Waltz, D. Retraint, A. Roos, P. Olier, and J. Lu: High strength nanocrystallized multilayered structure obtained by SMAT and co-rolling. Mater. Sci. Forum 614, 249 (2009).

    Article  CAS  Google Scholar 

  20. B.Z. Cai, Y. Long, C. Wen, Y.L. Gong, C.J. Li, J.M. Tao, and X.K. Zhu: Role of stacking fault energy and strain rate in strengthening of Cu and Cu–Al alloys. J. Mater. Res. 29, 1747 (2014).

    Article  CAS  Google Scholar 

  21. Y.H. Zhao, Z. Horita, T.G. Langdon, and Y.T. Zhu: Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu–Zn alloys: Influence of stacking fault energy. Mater. Sci. Eng., A 474, 342 (2008).

    Article  Google Scholar 

  22. Z.J. Zhang, Q.Q. Duan, X.H. An, S.D. Wu, G. Yang, and Z.F. Zhang: Microstructure and mechanical properties of Cu and Cu–Zn alloys produced by equal channel angular pressing. Mater. Sci. Eng., A 528, 4259 (2011).

    Article  Google Scholar 

  23. T.D. Shen and C.C. Koch: Formation and hardening effects in nanocrystalline Ti-N alloys prepared by mechanical alloying. Acta Mater. 44, 751 (1996).

    Google Scholar 

  24. J.Y. Guo, K. Wang, and L. Lu: Tensile properties of Cu with deformation twins induced by SMAT. J. Mater. Sci. Technol. 22, 6 (2006).

    Article  Google Scholar 

  25. X.L. Wu, P. Jiang, L. Chen, J.F. Zhang, F.P. Yuan, and Y.T. Zhu: Synergetic strengthening by gradient structure. Mater. Res. Lett. 2, 185–191 (2014).

    Article  CAS  Google Scholar 

  26. J.W. Tian, K. Dai, J.C. Villegas, L. Shaw, P.K. Lian, D.L. Klarstrom, and A.L. Ortiz: Tensile properties of a nickel-base alloy subjected to surface severe plastic deformation. Mater. Sci. Eng., A 493, 176 (2008).

    Article  Google Scholar 

  27. J.G. Li, M. Umemoto, Y. Todaka, and K. Tsuchiya: Role of strain gradient on the formation of nanocrystalline structure produced by severe plastic deformation. Acta Mater. 55, 1397 (2007).

    Article  CAS  Google Scholar 

  28. Y.M. Wang and E. Ma: Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52, 1699 (2004).

    Article  CAS  Google Scholar 

  29. V. Subramanya Sarma, J. Wang, W.W. Jian, A. Kauffmann, H. Conrad, J. Freudenberger, and Y.T. Zhu: Role of stacking fault energy in strengthening due to cryo-deformation of FCC metals. Mater. Sci. Eng., A 527, 7624 (2010).

    Article  Google Scholar 

  30. S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, and Z.F. Zhang: Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater. 57, 1586 (2009).

    Article  CAS  Google Scholar 

  31. X.H. An, S.D. Wu, Z.G. Wang, and Z.F. Zhang: Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu–Al alloys. Acta Mater. 74, 200 (2014).

    Article  CAS  Google Scholar 

  32. J.L. Ning and D. Wang: Concurrent high strength and high ductility in isotropic bulk Cu-Al alloy with three-dimensional nano-twinned structure. J. Alloys Compd. 514, 214 (2012).

    Article  CAS  Google Scholar 

  33. X.Y. San, X.G. Liang, L.P. Cheng, L. Shen, and X.K. Zhu: Effect of stacking fault energy on mechanical properties of ultrafine-grain Cu and Cu–Al alloy processed by cold-rolling. Trans. Nonferrous Met. Soc. China 22, 819 (2012).

    Article  CAS  Google Scholar 

  34. X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: The influence of stacking fault energy on the mechanical properties of nanostructured Cu and Cu–Al alloys processed by high-pressure torsion. Scr. Mater. 64, 954 (2011).

    Article  CAS  Google Scholar 

  35. X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Enhanced strength-ductility synergy in nanostructured Cu and Cu–Al alloys processed by high-pressure torsion and subsequent annealing. Scr. Mater. 66, 227 (2012).

    Article  CAS  Google Scholar 

  36. Y. Zhang, N.R. Tao, and K. Lu: Effects of stacking fault energy, strain rate and temperature on microstructure and strength of nanostructured Cu–Al alloys subjected to plastic deformation. Acta Mater. 59, 6048 (2011).

    Article  CAS  Google Scholar 

  37. V. Subramanya Sarma, K. Sivaprasad, D. Sturm, and M. Heilmaier: Microstructure and mechanical properties of ultra fine grained Cu–Zn and Cu–Al alloys produced by cryorolling and annealing. Mater. Sci. Eng., A 489, 253 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors wish to acknowledge the assistance and support of the National Natural Science Foundation of China (Grant No. 50874056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinkun Zhu.

Additional information

Contributing Editor: Jürgen Eckert

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Cai, B., Wen, C. et al. The role of temperature in the strengthening of Cu–Al alloys processed by surface mechanical attrition treatment. Journal of Materials Research 30, 1670–1677 (2015). https://doi.org/10.1557/jmr.2015.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.112

Navigation