Skip to main content

Advertisement

Log in

Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The progressive build up of fission products inside different nuclear reactor components can lead to significant damage of the constituent materials. We demonstrate the use of time-domain thermoreflectance (TDTR), a nondestructive thermal measurement technique, to study the effects of radiation damage on material properties. We use TDTR to report on the thermal conductivity of optimized ZIRLO, a material used as fuel cladding in nuclear reactors. We find that the thermal conductivity of optimized ZIRLO is 10.7 ± 1.8 W m−1 K−1 at room temperature. Furthermore, we find that the thermal conductivities of copper–niobium nanostructured multilayers do not change with helium ion irradiation doses of 1015 cm−2 and ion energy of 200 keV, demonstrating the potential of heterogeneous multilayer materials for radiation tolerant coatings. Finally, we compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Our results demonstrate that TDTR can be used to quantify depth dependent damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. H.J. Matzke: Radiation damage in nuclear materials. Nucl. Instrum. Methods Phys. Res., Sect. B 65, 30–39 (1992).

    Article  Google Scholar 

  2. P. Yvon and F. Carr: Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 385, 217–222 (2009). Nuclear Materials III Proceedings of the E-MRS 2008 Spring Meeting: Third Symposium N on Nuclear Materials.

    Article  CAS  Google Scholar 

  3. G.S. Was: Fundamentals of Radiation Materials Science (Springer, Germany, 2007).

    Google Scholar 

  4. L. David, S. Goms, G. Carlot, J-P. Roger, D. Fournier, C. Valot, and M. Raynaud: Characterization of thermal conductivity degradation induced by heavy ion irradiation in ceramic materials. J. Phys. D: Appl. Phys. 41, 035502 (2008).

    Article  CAS  Google Scholar 

  5. Z. Suud and R. Anshari: Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident. AIP Conf. Proc. 1448, 315–327 (2012).

    Article  CAS  Google Scholar 

  6. NRC Information Notice 2009–23, Supplement 1: Nuclear Fuel Thermal Conductivity Degradation, Oct 26, 2012.

  7. K. Gofryk, S. Du, C.R. Stanek, J.C. Lashley, X-Y. Liu, R.K. Schulze, J.L. Smith, D.J. Safarik, D.D. Byler, K.J. McClellan, B.P. Uberuaga, B.L. Scott, and D.A. Andersson: Anisotropic thermal conductivity in uranium dioxide. Nat. Commun. 5, 4551 (2014).

    Article  CAS  Google Scholar 

  8. T. Tanabe: Radiation damage of graphite—Degradation of material parameters and defect structures. Phys. Scr. 1996, 7 (1996).

    Article  Google Scholar 

  9. L.L. Snead, S.J. Zinkle, and D.P. White: Thermal conductivity degradation of ceramic materials due to low temperature, low dose neutron irradiation. J. Nucl. Mater. 340, 187–202 (2005).

    Article  CAS  Google Scholar 

  10. L.L. Snead: Accumulation of thermal resistance in neutron irradiated graphite materials. J. Nucl. Mater. 381, 76–82 (2008). Proceedings of the Seventh and Eighth International Graphite Specialists Meetings (INGSM).

    Article  CAS  Google Scholar 

  11. J-P. Crocombette and L. Proville: Thermal conductivity degradation induced by point defects in irradiated silicon carbide. Appl. Phys. Lett. 98, 191905 (2011).

    Article  CAS  Google Scholar 

  12. P.B. Weisensee, J.P. Feser, and D.G. Cahill: Effect of ion irradiation on the thermal conductivity of UO2 and U3O8 epitaxial layers. J. Nucl. Mater. 443, 212–217 (2013).

    Article  CAS  Google Scholar 

  13. D. Men, M.K. Patel, I.O. Usov, M. Toiammou, I. Monnet, J.C. Pivin, J.R. Porter, and M.L. Mecartney: Radiation damage in multiphase ceramics. J. Nucl. Mater. 443, 120–127 (2013).

    Article  CAS  Google Scholar 

  14. B.N. Nguyen, F. Gao, C.H. Henager, Jr., and R.J. Kurtz: Prediction of thermal conductivity for irradiated SiC/SiC composites by informing continuum models with molecular dynamics data. J. Nucl. Mater. 448, 364–372 (2014).

    Article  CAS  Google Scholar 

  15. Y. Katoh, K. Ozawa, C. Shih, T. Nozawa, R.J. Shinavski, A. Hasegawa, and L.L. Snead: Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects. J. Nucl. Mater. 448, 448–476 (2014).

    Article  CAS  Google Scholar 

  16. M. Ben-Belgacem, V. Richet, K.A. Terrani, Y. Katoh, and L.L. Snead: Thermo-mechanical analysis of LWR SiC/SiC composite cladding. J. Nucl. Mater. 447, 125–142 (2014).

    Article  CAS  Google Scholar 

  17. J. Cabrero, F. Audubert, R. Pailler, A. Kusiak, J. Battaglia, and P. Weisbecker: Thermal conductivity of SiC after heavy ions irradiation. J. Nucl. Mater. 396, 202–207 (2010).

    Article  CAS  Google Scholar 

  18. K. Horne, H. Ban, A. Mandelis, and A. Matvienko: Photothermal radiometry measurement of thermophysical property change of an ion-irradiated sample. Mater. Sci. Eng., B 177, 164–167 (2012).

    Article  CAS  Google Scholar 

  19. C. Jensen, M. Chirtoc, N. Horny, J.S. Antoniow, H. Pron, and H. Ban: Thermal conductivity profile determination in proton-irradiated ZrC by spatial and frequency scanning thermal wave methods. J. Appl. Phys. 114, 133509 (2013).

    Article  CAS  Google Scholar 

  20. M. Khafizov, C. Yablinsky, T.R. Allen, and D.H. Hurley: Measurement of thermal conductivity in proton irradiated silicon. Nucl. Instrum. Methods Phys. Res. Sect. B 325, 11–14 (2014).

    Article  CAS  Google Scholar 

  21. J. Pakarinen, M. Khafizov, L. He, C. Wetteland, J. Gan, A.T. Nelson, D.H. Hurley, A. El-Azab, and T.R. Allen: Microstructure changes and thermal conductivity reduction in UO2 following 3.9 MeV He2+ ion irradiation. J. Nucl. Mater. 454, 283–289 (2014).

    Article  CAS  Google Scholar 

  22. C.A. Paddock and G.L. Eesley: Transient thermoreflectance from thin metal films. J. Appl. Phys. 60, 285–290 (1986).

    Article  CAS  Google Scholar 

  23. D.G. Cahill: Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119 (2004).

    Article  CAS  Google Scholar 

  24. A.J. Schmidt, X. Chen, and G. Chen: Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114902 (2008).

    Article  CAS  Google Scholar 

  25. P.E. Hopkins: Thermal transport across solid interfaces with nanoscale imperfections: Effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance. ISRN Mech. Eng. 2013, 682586 (2013).

    Article  Google Scholar 

  26. D-W. Oh, J. Ravichandran, C-W. Liang, W. Siemons, B. Jalan, C.M. Brooks, M. Huijben, D.G. Schlom, S. Stemmer, L.W. Martin, A. Majumdar, R. Ramesh, and D.G. Cahill: Thermal conductivity as a metric for the crystalline quality of SrTiO3 epitaxial layers. Appl. Phys. Lett. 98, 221904 (2011).

    Article  CAS  Google Scholar 

  27. T. Tong, D. Fu, A.X. Levander, W.J. Schaff, B.N. Pantha, N. Lu, B. Liu, I. Ferguson, R. Zhang, J.Y. Lin, H.X. Jiang, J. Wu, and D.G. Cahill: Suppression of thermal conductivity in InxGa1-xN alloys by nanometer-scale disorder. Appl. Phys. Lett. 102, 121906 (2013).

    Article  CAS  Google Scholar 

  28. C.S. Gorham, K. Hattar, R. Cheaito, J.C. Duda, J.T. Gaskins, T.E. Beechem, J.F. Ihlefeld, L.B. Biedermann, E.S. Piekos, D.L. Medlin, and P.E. Hopkins: Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces. Phys. Rev. B 90, 024301 (2014).

    Article  CAS  Google Scholar 

  29. T.M. Smeeton, M.J. Kappers, J.S. Barnard, M.E. Vickers, and C.J. Humphreys: Electron-beam-induced strain within InGaN quantum wells: False indium cluster detection in the transmission electron microscope. Appl. Phys. Lett. 83, 5419–5421 (2003).

    Article  CAS  Google Scholar 

  30. R.F. Egerton, P. Li, and M. Malac: Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004). International Wuhan Symposium on Advanced Electron Microscopy.

    Article  CAS  Google Scholar 

  31. J.F. Ziegler, M.D. Ziegler, and J.P. Biersack: SRIM the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818–1823 (2010). 19th International Conference on Ion Beam Analysis.

    Article  CAS  Google Scholar 

  32. P.E. Hopkins, J.R. Serrano, L.M. Phinney, S.P. Kearney, T.W. Grasser, and C.T. Harris: Criteria for cross-plane dominated thermal transport in multilayer thin film systems during modulated laser heating. J. Heat Transfer 132, 081302 (2010).

    Article  CAS  Google Scholar 

  33. Y. Wang, J.Y. Park, Y.K. Koh, and D.G. Cahill: Thermoreflectance of metal transducers for time-domain thermoreflectance. J. Appl. Phys. 108, 043507 (2010).

    Article  CAS  Google Scholar 

  34. M. Ghotbi, M. Ebrahim-Zadeh, A. Majchrowski, E. Michalski, and I.V. Kityk: High-average-power fem-tosecond pulse generation in the blue using BiB3O6. Opt. Lett. 29, 2530–2532 (2004).

    Article  CAS  Google Scholar 

  35. G.L. Eesley: Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. Phys. Rev. B 33, 2144–2151 (1986).

    Article  CAS  Google Scholar 

  36. H.E. Elsayed-Ali, T.B. Norris, M.A. Pessot, and G.A. Mourou: Time-resolved observation of electron-phonon relaxation in copper. Phys. Rev. Lett. 58, 1212–1215 (1987).

    Article  CAS  Google Scholar 

  37. A. Giri, B.M. Foley, and P.E. Hopkins: Influence of hot electron scattering and electron-phonon interactions on thermal boundary conductance at metal/non-metal interfaces. J. Heat Transfer 136, 092401 (2014).

    Article  Google Scholar 

  38. G. Tas, J.J. Loomis, H.J. Maris, A.A. Bailes, and L.E. Seiberling: Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation. Appl. Phys. Lett. 72, 2235–2237 (1998).

    Article  CAS  Google Scholar 

  39. M.D. Losego, M.E. Grady, N.R. Sottos, D.G. Cahill, and P.V. Braun: Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 11, 502–506 (2012).

    Article  CAS  Google Scholar 

  40. C. Thomsen, J. Strait, Z. Vardeny, H.J. Maris, J. Tauc, and J.J. Hauser: Coherent phonon generation and detection by picosecond light pulses. Phys. Rev. Lett. 53, 989–992 (1984).

    Article  CAS  Google Scholar 

  41. C. Thomsen, H.T. Grahn, H.J. Maris, and J. Tauc: Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).

    Article  CAS  Google Scholar 

  42. S. Huxtable, D.G. Cahill, V. Fauconnier, J.O. White, and J-C. Zhao: Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater. 3, 298–301 (2004).

    Article  CAS  Google Scholar 

  43. X. Zheng, D.G. Cahill, and J-C. Zhao: Thermal conductivity imaging of thermal barrier coatings. Adv. Eng. Mater. 7, 622–626 (2005).

    Article  CAS  Google Scholar 

  44. Y.K. Koh, S.L. Singer, W. Kim, J.M.O. Zide, H. Lu, D.G. Cahill, A. Majumdar, and A.C. Gossard: Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors. J. Appl. Phys. 105, 054303 (2009).

    Article  CAS  Google Scholar 

  45. P.E. Hopkins, J.C. Duda, S.P. Clark, C.P. Hains, T.J. Rotter, L.M. Phinney, and G. Balakrishnan: Effect of dislocation density on thermal boundary conductance across GaSb/GaAs interfaces. Appl. Phys. Lett. 98, 161913 (2011).

    Article  CAS  Google Scholar 

  46. T.R. Allen, R.J.M. Konings, and A.T. Motta: Corrosion of zirconium alloys. In Comprehensive Nuclear Materials, R.J.M. Konings ed.; Elsevier: Oxford, 2012; pp. 49–68.

    Chapter  Google Scholar 

  47. K-T. Kim: Evolutionary developments of advanced PWR nuclear fuels and cladding materials. Nucl. Eng. Des. 263, 59–69 (2013).

    Article  CAS  Google Scholar 

  48. J.P. Foster, K. Yueh, and R.J. Comstock: Zirlo cladding improvement. J. ASTM Int. 5, 1–13 (2007).

    Google Scholar 

  49. G. Wikmark, L. Hallstadius, and K. Yueh: Cladding to sustain corrosion, creep and growth at high burn-ups. Nucl. Eng. Technol. 41, 143–148 (2009). Special Issue on the Water Reactor Fuel Performance Meeting 2008.

    Article  CAS  Google Scholar 

  50. TEM Data taken by Evans Analytical Group. http://www.eag.com/.

  51. A. Misra, R.G. Hoagland, and H. Kung: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84, 1021–1028 (2004).

    Article  CAS  Google Scholar 

  52. M. Zhernenkov, S. Gill, V. Stanic, E. DiMasi, K. Kisslinger, J.K. Baldwin, A. Misra, M.J. Demkowicz, and L. Ecker: Design of radiation resistant metallic multilayers for advanced nuclear systems. Appl. Phys. Lett. 104, 241906 (2014).

    Article  CAS  Google Scholar 

  53. T. Höchbauer, A. Misra, K. Hattar, and R.G. Hoagland: Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites. J. Appl. Phys. 98, 123516 (2005).

    Article  CAS  Google Scholar 

  54. K. Hattar, M. Demkowicz, A. Misra, I. Robertson, and R. Hoagland: Arrest of He bubble growth in Cu-Nb multilayer nanocomposites. Scr. Mater. 58, 541–544 (2008).

    Article  CAS  Google Scholar 

  55. M.J. Demkowicz, D. Bhattacharyya, I. Usov, Y.Q. Wang, M. Nastasi, and A. Misra: The effect of excess atomic volume on He bubble formation at fcc-bcc interfaces. Appl. Phys. Lett. 97, 161903 (2010).

    Article  CAS  Google Scholar 

  56. M.J. Demkowicz, A. Misra, and A. Caro: The role of interface structure in controlling high helium concentrations. Curr. Opin. Solid State Mater. Sci. 16, 101–108 (2012). Material Challenges for Advanced Nuclear Power Systems.

    Article  CAS  Google Scholar 

  57. B. Gundrum, D. Cahill, and R. Averback: Thermal conductance of metal-metal interfaces. Phys. Rev. B 72, 1–5 (2005).

    Article  CAS  Google Scholar 

  58. X. Zhang, N. Li, O. Anderoglu, H. Wang, J.G. Swadener, T. Höchbauer, A. Misra, and R.G. Hoagland: Nanostructured Cu/Nb multilayers subjected to helium ion-irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 261, 1129–1132 (2007).

    Article  CAS  Google Scholar 

  59. R.C. Birtcher and T.H. Blewitt: Damage saturation effects on volume and resistivity changes induced by fission-fragment irradiation of copper. J. Nucl. Mater. 98, 63–70 (1981).

    Article  CAS  Google Scholar 

  60. R. Wilson and D. Cahill: Experimental validation of the interfacial form of the Wiedemann-Franz law. Phys. Rev. Lett. 108, 255901 (2012).

    Article  CAS  Google Scholar 

  61. R. Cheaito, K. Hattar, J.T. Gaskins, A.K. Yadav, J.C. Duda, T.E. Beechem, J.F. Ihlefeld, E.S. Piekos, J.K. Baldwin, A. Misra, and P.E. Hopkins: Thermal flux limited electron Kapitza conductance in copper-niobium multilayers. Appl. Phys. Lett. 106, 093114 (2015).

    Article  CAS  Google Scholar 

  62. W.S. Capinski and H.J. Maris: Improved apparatus for picosecond pump-and-probe optical measurements. Rev. Sci. Instrum. 67, 2720–2726 (1996).

    Article  CAS  Google Scholar 

  63. A.J. Schmidt, R. Cheaito, and M. Chiesa: A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 80, 094901 (2009).

    Article  CAS  Google Scholar 

  64. J.A. Malen, K. Baheti, T. Tong, Y. Zhao, J.A. Hudgings, and A. Majumdar: Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance. J. Heat Transfer 133, 081601 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed in part at the Center for Atomic, Molecular, and Optical Science (CAMOS) at the University of Virginia. P. E. H. recognizes support from the Naval Research Young Investigator Program (Grant No. N00014-13-4-0528). Authors acknowledge Evans Analytical Group for TEM data. We are appreciative of funding through Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khalid Hattar or Patrick E. Hopkins.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheaito, R., Gorham, C.S., Misra, A. et al. Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage. Journal of Materials Research 30, 1403–1412 (2015). https://doi.org/10.1557/jmr.2015.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.11

Navigation