Skip to main content
Log in

Study of the effect of grain size on melting temperature of Al nanocrystals by molecular dynamics simulation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This research is devoted to the study of the effect of grain size and structural disorders on the melting behavior of Al nanocrystals under nonequilibrium conditions. The results indicate that Tm is constant and similar to Tm of perfect crystal for nanocrystals of 14 nm and higher. But, by a decrease in the grain size, Tm is significantly reduced. In addition, by further decrease in the size of the grain up to about three times the value of Al-lattice parameter, the behavior of the melt will be similar to the amorphous phase. Since it seems that these behaviors are related to high percentage of grain boundaries in nanocrystalline materials, the structural disorders of the atoms in different regions of nanocrystalline samples are separately studied during heating. The results show that premelting of boundary regions causes the melting process of nanostructure materials to be done within one temperature limit instead of at one temperature point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

REFERENCES

  1. F.G. Shi: Size dependent thermal vibrations and melting in nanocrystals. J. Mater. Res. 9, 1307 (1994).

    Article  CAS  Google Scholar 

  2. X.J. Liu, L.W. Yang, Z.F. Zhou, P.K. Chu, and C.Q. Sun: Inverse Hall-Petch relationship in the nanostructured TiO2: Skin-depth energy pinning versus surface preferential melting. J. Appl. Phys. 108, 073503 (2010).

    Article  Google Scholar 

  3. L. Zhou, X. Wei, and N. Zhou: Nanoscale effects of NiCl2 nanostructures. Comput. Mater. Sci. 30, 314 (2004).

    Article  CAS  Google Scholar 

  4. M.L. Liao: Influences of film thickness and surface orientation on melting behaviors of copper nanofilms. J. Mater. Res. 14, 535 (2014).

    Article  Google Scholar 

  5. Z. Zhang, X.X. Lu, and Q. Jiang: Finite size effect on melting enthalpy and melting entropy of nanocrystals. Phys. B 270, 249 (1999).

    Article  CAS  Google Scholar 

  6. A.K. Schaper, F. Phillipp, and H. Hou: Melting behavior of copper nanocrystals encapsulated in onion-like carbon cages. J. Mater. Res. 20, 1844 (2005).

    Article  CAS  Google Scholar 

  7. Q.S. Mei, and K. Lu: Melting and superheating of crystalline solids: From bulk to nanocrystals. Prog. Mater. Sci. 52, 1175 (2007).

    Article  CAS  Google Scholar 

  8. A. Moita, S. Kim, J. Houze, B. Jelinek, S.G. Kim, S.J. Park, R.M. German, and M.F. Horstemeyer: Melting tungsten nanoparticles: A molecular dynamics study. J. Phys. D: Appl. Phys. 41, 185406 (2008).

    Article  Google Scholar 

  9. Y. Shibuta and T. Suzuki: Melting and solidification point of fcc-metal nanoparticles with respect to particle size: A molecular dynamics study. Chem. Phys. Lett. 498, 323 (2010).

    Article  CAS  Google Scholar 

  10. W. Luo, K. Su, K. Li, G. Liao, N. Hu, and M. Jia: Substrate effect on the melting temperature of gold nanoparticles. J. Chem. Phys. 136, 234704 (2012).

    Article  Google Scholar 

  11. J.Q. Broughton and G.H. Gilmer: Grain boundary shearing as a test for interface melting. Modell. Simul. Mater. Sci. Eng. 6, 87 (1988).

    Article  Google Scholar 

  12. T. Wang, F.X. Zhou, and Y.W. Liu: Influence of grain boundary on melting. Chin. Phys. Lett. 18, 1242 (2001).

    Article  Google Scholar 

  13. P. Keblinski: High temperature structure and properties of grain boundaries—Insights obtained from atomic level simulations. Acta Phys. Pol. A 102, 123 (2002).

    Article  CAS  Google Scholar 

  14. P.L. Williams and Y. Mishin: Thermodynamics of grain boundary premelting in alloys. II Atomistic simulation. Acta Mater. 57, 3786 (2009).

    Article  CAS  Google Scholar 

  15. L.B. Han, Q. An, R.S. Fu, L. Zheng, and S.N. Luo: Local and bulk melting of Cu at grain boundaries. Phys. B: Condens. Matter 405, 748 (2010).

    Article  CAS  Google Scholar 

  16. A.M. He, S. Duan, J.L. Shao, P. Wang, and C. Qin, Atomistic simulations of shock induced melting of bicrystal copper with twist grain boundary. J. Appl. Phys. 112, 103516 (2012).

    Article  Google Scholar 

  17. M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta: Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philos. Mag. 88, 1723 (2007).

    Article  Google Scholar 

  18. S. Xiao, W. Hu, and J. Yang: Melting behaviors of nanocrystalline Ag. J. Phys. Chem. B 109, 20339 (2005).

    Article  CAS  Google Scholar 

  19. S.S. Dalgic and U. Domekeli: Melting properties of tin nanoparticles by molecular dynamics simulation. J. Optoelectron. Adv. Mater. 11, 2126 (2009).

    CAS  Google Scholar 

  20. Y.Y. Han, J. Shuai, H.M. Lu, and X.K. Meng: Size and dimensionality dependent thermodynamic properties of ice nanocrystals. J. Phys. Chem. B 116, 1651 (2012).

    Article  CAS  Google Scholar 

  21. J. Chen, L. Ouyang, and W.Y. Ching: Molecular dynamics simulation of Y-doped Σ37 grain boundary in alumina. Acta Mater 53, 4111 (2005).

    Article  CAS  Google Scholar 

  22. P. Puri and V. Yang: Effect of particle size on melting of aluminum at nano scales. J. Phys. Chem. C 111, 11776 (2007).

    Article  CAS  Google Scholar 

  23. J.R. Morris and X. Song: The melting lines of model systems calculated from coexistence simulations. J. Chem. Phys. 116, 9352 (2002).

    Article  CAS  Google Scholar 

  24. F. Delogu: Melting behavior of a pentagonal Au nanotube. Nanotechnology 18, 325706 (2007).

    Article  Google Scholar 

  25. Y. Shibuta and T. Suzuki: Melting and nucleation of iron nanoparticles: A molecular dynamics study. Chem. Phys. Lett. 445, 265 (2007).

    Article  CAS  Google Scholar 

  26. E.C. Neyts and A. Bogaerts: Numerical study of the size dependent melting mechanisms of nickel nanoclusters. J. Phys. Chem. C 113, 2771 (2009).

    Article  CAS  Google Scholar 

  27. S. Yip: Handbook of Materials Modeling-Part B (Springer, New York, 2005).

    Book  Google Scholar 

  28. Z.H. Jin, H.W. Sheng and K. Lu: Melting of Pb clusters without free surfaces. Phys. Rev. B 60, 141 (1999).

    Article  CAS  Google Scholar 

  29. Z.H. Jin, P. Gumbsch, K. Lu, and E. Ma: Melting mechanism at the limit of superheating. Phys. Rev. Lett. 87, 055703 (2001).

    Article  CAS  Google Scholar 

  30. C.K. Mills: Recommended Values of Thermophysical Properties for Selected Commercial Alloys (Woodhead pub, Cambridge, England, 2002).

    Book  Google Scholar 

  31. S. Xiao, W. Hu, and J. Yang: Melting temperature: From nanocrystalline to amorphous phase. J. Chem. Phys. 125, 184504 (2006).

    Article  Google Scholar 

  32. T. Xu and M. Li: Topological and statistical properties of a constrained Voronoi tessellation. Philos. Mag. 89, 349 (2009).

    Article  CAS  Google Scholar 

  33. M. Li and T. Xu: Topological and atomic scale characterization of grain boundary networks in polycrystalline and nanocrystalline materials. Prog. Mater. Sci. 56, 864 (2001).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study has been carried out in the Particulate Materials Research Groups (Department of Materials Engineering, Isfahan University of Technology) and National High Performance Computer Center (http://nhpcc.iut.ac.ir). The authors are grateful for their support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Panjepour.

Additional information

Contributing Editor: Susan B. Sinnott

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noori, Z., Panjepour, M. & Ahmadian, M. Study of the effect of grain size on melting temperature of Al nanocrystals by molecular dynamics simulation. Journal of Materials Research 30, 1648–1660 (2015). https://doi.org/10.1557/jmr.2015.109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.109

Navigation