Skip to main content
Log in

Structural characterization and properties of nanocrystalline Sn1−xCoxO2 based dilute magnetic semiconductors

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Monophasic Sn1−xCoxO2 (x = 0.05, 0.10, and 0.15) nanoparticles with tetragonal structure have been successfully synthesized by solvothermal method using oxalate precursor route. Powder x-ray diffraction and selected area electron diffraction studies confirmed highly crystalline cassiterite SnO2 structure. The contraction of lattice constants confirmed the incorporation of Co2+ in SnO2 host lattice. Hexagonal nanoparticles with average grain size of 8–13 nm have been formed. With the increasing Co content, the decreasing crystallite size of SnO2 with increasing surface areas from 194 to 219 m2/g was found. The percentage reflectance increases on increasing the cobalt concentration, and a noticeable blue shift appeared. The band gap was found to be 3.85, 3.91, and 4.09 eV, respectively. Co-doped SnO2 showed distinct magnetic behavior with different Co2+ concentration. For x = 0.05 and 0.10, nanoparticles showed paramagnetism with antiferromagnetic interaction, however, on further increasing x = 0.15, the nanoparticles showed canted antiferromagnetic coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

REFERENCES

  1. C.B. Fitzgerald, M. Venkatesan, A.P. Douvalis, S. Huber, J.M.D. Coey, and T. Bakas: SnO2 doped with Mn, Fe or Co: Room temperature dilute magnetic semiconductors. J. Appl. Phys. 95, 7390 (2004).

    Article  CAS  Google Scholar 

  2. C.M. Liu, X.T. Zu, and W.L. Zhou: Magnetic interaction in Co-doped SnO2 nano-crystal powders. J. Phys.: Condens. Matter 18, 6001 (2006).

    CAS  Google Scholar 

  3. A. Punnoose, J. Hays, V. Gopal, and V. Shutthanandan: Room temperature ferromagnetism in chemically synthesized Sn1−xCoxO2 powders. Appl. Phys. Lett. 85, 1559 (2004).

    Article  CAS  Google Scholar 

  4. A. Bouaine, N. Brihi, G. Schmerber, C.U. Bouillet, S. Colis, and A. Dinia: Structural, optical and magnetic properties of Co-doped SnO2 powders synthesized by the coprecipitation technique. J. Phys. Chem. C 111, 2924 (2007).

    Article  CAS  Google Scholar 

  5. C.B. Fitzgerald, M. Venkatesan, L.S. Dorneles, R. Gunning, P. Stamenov, J.M.D. Coey, P.A. Stampe, R.J. Kennedy, E.C. Moreira, and U.S. Sias: Magnetism in dilute magnetic oxide thin films based in SnO2. Phys. Rev. B 74, 115307 (2006).

    Article  Google Scholar 

  6. S.B. Ogale, R.J. Choudhary, J.P. Buban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simpson, N.D. Browning, S.D. Sarma, H.D. Drew, R.L. Greene, and T. Venkatesan: High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2−δ. Phys. Rev. Lett. 91, 077205 (2003).

    Article  CAS  Google Scholar 

  7. S. Ghosh, D.D. Munshi, and K. Mandal: Paramagnetism in single-phase Sn1−xCoxO2 dilute magnetic semiconductors. J. Appl. Phys. 107, 123919 (2010).

    Article  Google Scholar 

  8. S. Mohanty and S. Ravi: Magnetic properties of Co-doped SnO2 diluted magnetic semiconductors. Indian J. Phys. 84, 735 (2010).

    Article  Google Scholar 

  9. W. Chen and J. Li: Magnetic and electronic structure properties of Co-doped SnO2 nanoparticles synthesized by the sol-gel-hydrothermal technique. J. Appl. Phys. 109, 083930 (2011).

    Article  Google Scholar 

  10. X.F. Liu, Y. Sun, and R.H. Yu: Role of oxygen vacancies in tuning magnetic properties of Co-doped SnO2 insulating films. J. Appl. Phys. 101, 123907 (2007).

    Article  Google Scholar 

  11. Y. Xu, Y. Tang, C. Li, G. Cao, W. Ren, H. Xu, and Z. Ren: Synthesis and room temperature ferromagnetic properties of single-crystalline Co-doped SnO2 nanocrystals via a high magnetic field. J. Alloys Compd. 481, 837 (2009).

    Article  CAS  Google Scholar 

  12. K. Srinivas, M. Vithal, B. Sreedhar, M.M. Raja, and P.V. Reddy: Structural, optical, and magnetic properties of nanocrystalline Co doped SnO2 based diluted magnetic semiconductors. J. Phys. Chem. C 113, 3543 (2009).

    Article  CAS  Google Scholar 

  13. L.M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, L.M. Wang, and F. Gao: Microstructure and luminescence properties of Co-doped SnO2 nanoparticles synthesized by hydrothermal method. J. Mater. Sci.: Mater. Electron. 19, 868 (2008).

    CAS  Google Scholar 

  14. S. Khatoon, K. Coolahan, S.E. Lofland, and T. Ahmad: Optical and magnetic properties of solid solutions of In2−xMnxO3 (0.05, 0.10 and 0.15) nanoparticles. J. Alloys Compd. 545, 162 (2012).

    Article  CAS  Google Scholar 

  15. S. Khatoon, K. Coolahan, S.E. Lofland, and T. Ahmad: Solvothermal synthesis of In2−xCoxO3 (0.05 ≤ x ≤ 0.15) dilute magnetic semiconductors: Optical, magnetic and dielectric properties. J. Am. Ceram. Soc. 96, 2544 (2013).

    Article  CAS  Google Scholar 

  16. T. Ahmad, S. Khatoon, K. Coolahan, and S.E. Lofland: Solvothermal synthesis, optical and magnetic properties of nanocrystalline Cd1−xMnxO (0.04 < x = 0.10) solid solutions. J. Alloys Compd. 558, 117 (2013).

    Article  CAS  Google Scholar 

  17. T. Ahmad, S. Khatoon, K. Coolahan, and S.E. Lofland: Structural characterization, optical and magnetic properties of Ni-doped CdO dilute magnetic semiconductor nanoparticles. J. Mater. Res. 28, 1245 (2013).

    Article  CAS  Google Scholar 

  18. T. Ahmad, S. Khatoon, and K. Coolahan: Optical and magnetic properties of Sn1−xMnxO2 dilute magnetic semiconductor nanoparticles. J. Alloys Compd. 615, 263 (2014).

    Article  CAS  Google Scholar 

  19. G. Kortum: Reflectance Spectroscopy: Principles, Methods, Applications (Springer, New York, 1969).

    Book  Google Scholar 

  20. R. Alcantara, F.J.F. Madrigal, P. Lavela, C.P. Vicente, and J.L. Tirado: Tin oxalate as a precursor of tin dioxide and electrode materials for lithium-ion batteries. J. Solid State Electrochem. 6, 55 (2001).

    Article  CAS  Google Scholar 

  21. K. Nakamoto: Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley & Sons, New York, 1986).

    Google Scholar 

  22. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976).

    Article  Google Scholar 

  23. X. Wei, G. Xu, Z. Ren, Y. Wang, G. Shen, and G. Han: Size-controlled synthesis of BaTiO3 nanocrystals via a hydrothermal route. Mater. Lett. 62, 3666 (2008).

    Article  CAS  Google Scholar 

  24. S.J. Lee, K.Y. Kang, S.K. Han, M.S. Jang, B.G. Chae, Y.S. Yang, and S.H. Kim: Phase formation and ferroelectricity of sol-gel derived (Pb, La)TiO3 thin films. Appl. Phys. Lett. 72, 299 (1998).

    Article  CAS  Google Scholar 

  25. M.S. Samuel, L. Bose, and K.C. George: Optical properties of ZnO nanoparticles. Acad. Rev. 16, 57 (2009).

    Google Scholar 

  26. E. Burstein: Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632 (1954).

    Article  CAS  Google Scholar 

  27. T.S. Moss: The interpretation of the properties of indium antimonide. Proc. Phys. Soc., London, Sect. B 67, 775 (1954).

    Article  Google Scholar 

  28. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, and T. Siemieniewska: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 (1985).

    Article  CAS  Google Scholar 

  29. K.C. Barick, M. Aslam, V.P. Dravid, and D. Bahadur: Self-aggregation and assembly of size-tunable transition metal doped ZnO nanocrystals. J. Phys. Chem. C 112, 15163 (2008).

    Article  CAS  Google Scholar 

  30. T. Ahmad, S. Khatoon, S.E. Lofland, and G.S. Thakur: Structural characterization and properties of nano-sized Cd1−xCoxO dilute magnetic semiconductors prepared by solvothermal method. Mater. Sci. Semicond. Process. 17, 207 (2014).

    Article  CAS  Google Scholar 

  31. J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, and W.K. Choo: Magnetic properties of epitaxially grown semiconducting Zn1−xCoxO thin films by pulsed laser deposition. J. Appl. Phys. 92, 6066 (2002).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

TA thanks CSIR, Govt. of India for financial support of the research project (No. 01(2448)/10EMR-II). SK thanks UGC and CSIR for research fellowships. The authors also thank Prof. K.V. Ramanujachary and Prof. S.E. Lofland, Rowan University, USA for magnetic measurements as well as for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tokeer Ahmad.

Additional information

Contributing Editor: Michael E. McHenry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, T., Khatoon, S. Structural characterization and properties of nanocrystalline Sn1−xCoxO2 based dilute magnetic semiconductors. Journal of Materials Research 30, 1611–1618 (2015). https://doi.org/10.1557/jmr.2015.102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.102

Navigation