Skip to main content
Log in

Hydrothermal synthesis and characterization of the eulytite phase of bismuth germanium oxide powders

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A simple hydrothermal route to the eulytite phase of bismuth germanium oxide (E-BGO: Bi4(GeO4)3) that required no post-processing has been developed. The E-BGO material was isolated from a mixture of bismuth nitrate pentahydrate and a slight excess of germanium oxide in water under hydrothermal conditions (185 °C for 24 h). The resultant materials were characterized by powder x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and luminescence measurements to verify the particle’s phase (eulytite), morphology, size, and response to a variety of excitation energy sources, respectively. Photoluminescence spectroscopic response from E-BGO pellets indicated that the samples exhibited a strong emission peak consistent with an x-ray induced luminescence of a E-BGO single crystal (500 nm excited at 285 nm). Cathodoluminescent properties of the E-BGO displayed a broadband spectrum with a maximum at 487 nm. The growth process was consistent with a standard Oswald ripening and LaMer growth processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. W.M. Yen, S. Shionoya, and H. Yamamoto: Phosphor Handbook, 2nd ed. (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2007).

    Google Scholar 

  2. E. Dieguez, L. Arizmendi, and J.M. Cabrera: X-ray induced luminescence, photoluminescence and thermoluminescence of Bi4Ge3O12. J. Phys. C: Solid State Phys. 18, 4777 (1985).

    Article  CAS  Google Scholar 

  3. Saint-Gobain Ceramics & Plastics, Inc.: BGO, Bismuth germanate scintillation material, http://www.detectors.saint-gobain.com/Default.aspx (2013).

  4. C.W.E. van Eijk: Inorganic-scintillator development. Nucl. Instrum. Methods Phys. Res., A 460, 1 (2001).

    Article  Google Scholar 

  5. G.C. Santana, A.C.S. de Mello, M.E.G. Valerio, and Z.S. Macedo: Scintillating properties of pure and doped BGO ceramics. J. Mater. Sci. 42, 2231 (2007).

    Article  CAS  Google Scholar 

  6. V.V. Zyryanov, V.I. Smirnov, and M.I. Ivanovskaya: Mechanochemical synthesis of crystalline compounds in the Bi2O3−GeO2 system. Inorg. Mater. 41, 711 (2005).

    Google Scholar 

  7. A.F. Shimanskii and M.N. Vasil’eva: Nonstoichiometry and sintering of bismuth-germanium binary oxides in the presence of liquid phase. Refract. Ind. Ceram. 42, 20 (2001).

    Article  CAS  Google Scholar 

  8. M.G. Kisteneva, A.S. Akrestina, S.M. Shandarov, A.E. Mandel, A.N. Grebenchukov, E.V. Pozdeeva, and Y.F. Kargin: Spectral dependences of the optical absorption in bismuth germanium oxide crystals annealed in vacuum. Russ. Phys. J. 55, 444 (2012).

    Article  CAS  Google Scholar 

  9. I.I. Novoselov, I.V. Makarov, V.A. Fedotov, N.V. Ivannikova, and Y.V. Shubin: Synthesis of a bismuth germanium oxide source material for Bi4Ge3O12 crystal growth. Inorg. Chem. 49, 412 (2013).

    CAS  Google Scholar 

  10. M. Ishii and M. Kobayashi: Single-crystals for radiation detectors. Prog. Cryst. Growth Charact. 23, 245 (1991).

    Article  Google Scholar 

  11. M.T. Borowiec, A. Majchrowski, J. Zmija, H. Szymczak, T. Zayarniuk, E. Michalski, and M. Baranski: Crystal growth and optical properties of iron sillenite Bi25FeO40. In Proceedings of SPIE, Vol. 5136, 26 (2003).

    Article  CAS  Google Scholar 

  12. Z.S. Macedo and A.C. Hernandes: Laser sintering of bismuth germanate (Bi4Ge3O12) ceramics. J. Am. Ceram. Soc. 85, 1870 (2002).

    Article  CAS  Google Scholar 

  13. T-K. Tseng: Luminescent oxide nanocomposite: Synthesis, characterization, and scintillation application. Thesis, Department of Materials Science and Engineering, University of Florida, 2010.

  14. D.E. Kozhbakhteeva and N.I. Leonyuk: Hydrothermal synthesis and morphology of eulytite-like single crystals. J. Optoelectr. Adv. Mater. 5, 621 (2003).

    CAS  Google Scholar 

  15. S. Polosan, E. Matei, and C. Logofatu: Synthesis of Eu-doped bismuth germanate nano-ceramic powder. Optoelectron. Adv. Mater., Rapid Commun. 4, 1503 (2010).

    CAS  Google Scholar 

  16. PDF4+ 2013 database. International Centre for Diffraction Data, Newtown Square, PA.

  17. R. Chen, J. Bi, L. Wu, Z. Li, and X. Fu: Orthorhombic Bi2GeO5 nanobelts: Synthesis, characterization, and photocatalytic properties. Cryst. Growth Des. 9, 1775 (2009).

    Article  CAS  Google Scholar 

  18. J. Tuac: Optical properties and electronic structure of amorphous Ge and Si. J. Mater. Res. Bull. 3, 37 (1968).

    Article  Google Scholar 

  19. O.M. Bordun: Photoluminescence of Bi4Ge3O12 thin films and ceramics. J. Appl. Spectrosc. 63, 97 (1996).

    Article  Google Scholar 

  20. N. Katoh, K. Yasuda, T. Shiga, M. Hasegawa, R. Onimaru, S. Shimizu, G. Bengua, M. Ishikawa, N. Tamaki, and H. Shirato: A new brain positron emission tomography scanner with semiconductor detectors for target volume delineation and radiotherapy treatment planning in patients with nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 82, e671 (2012).

    Article  Google Scholar 

  21. J. Tauc, R. Grigorov, and A. Vancu: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627 (1966).

    Article  CAS  Google Scholar 

  22. S. Polosan, A.C. Galca, and M. Secu: Band-gap correlations in Bi4Ge3O12 amorphous and glass-ceramic materials. Solid State Sci. 13, 49 (2011).

    Article  CAS  Google Scholar 

  23. R.B. Bernstein and D. Cubicciotti: The kinetics of the reaction of germanium and oxygen. J. Am. Chem. Soc. 73, 4112 (1951).

    Article  CAS  Google Scholar 

  24. X. Jiang, L. Su, P. Yu, X. Guo, H. Tang, X. Xu, L. Zheng, H. Li, and J. Xu: Broadband photoluminescence of Bi2O3-GeO2 binary systems: Glass, glass-ceramics and crystals. Laser Phys. 23, 105812 (2013).

    Article  Google Scholar 

  25. N. Henry, M. Evain, P. Deniard, S. Jobic, F. Abraham, and O. Mentre: [Bi2O2]2+ layers in Bi2O2(OH)(NO3): Synthesis and structure determination. Z. Naturforsch. 60b, 322 (2005).

    Article  Google Scholar 

  26. G.S. Pokrovski, F. Martin, J-L. Hazemann, and J. Schott: An x-ray absorption fine structure spectroscopy study of germanium-organic ligand complexes in aqueous solution. Chem. Geol. 163, 151 (2000).

    Article  CAS  Google Scholar 

  27. B. Tooth, B. Etschmann, G.S. Pokrovsi, D. Testemale, J-L. Hazemann, P.V. Grundler, and J. Brugger: Bismuth speciation in hydrothermal fluids: An x-ray absorption spectroscopy and solubility study. Geochim. Cosmochim. Acta 101, 156 (2013).

    Article  CAS  Google Scholar 

  28. V. Ranieri, J. Haines, O. Cambon, C. Levelut, R. Le Parc, M. Cambon, and J-L. Hazemann: In situ x-ray absorption spectroscopy study of Si1−xGexO2 dissolution and germanium aqueous speciation under hydrothermal conditions. Inorg. Chem. 51, 414 (2012).

    Article  CAS  Google Scholar 

  29. G.S. Pokrovski and J. Schott: Thermodynamic properties of aqueous Ge(IV) hydroxide complexes from 25 to 350 °C: Implications for the behavior of germanium and the Ge/Si ratio in hydrothermal fluids. Geochim. Cosmochim. Acta 62, 1631 (1998).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank S. Bingham and C. Mcglinchey for technical assistance and the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories for support of this work. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Boyle.

Additional information

Supplementary Material

To view supplementary material for this article, please visit http://dx.doi.org/jmr.2014.97.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyle, T.J., Sivonxay, E., Yang, P. et al. Hydrothermal synthesis and characterization of the eulytite phase of bismuth germanium oxide powders. Journal of Materials Research 29, 1199–1209 (2014). https://doi.org/10.1557/jmr.2014.97

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.97

Navigation