Skip to main content
Log in

Synthesis, microstructure evolution, and mechanical properties of (Cr1-xVx)2AlC ceramics by in situ hot-pressing method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nearly dense and almost single-phase bulk (Cr1-xVx)2AlC (x = 0, 0.25, 0.5, 0.75, and 1.0) ceramics were successfully fabricated by in situ hot-pressing method using Cr, V, Al, and C powders as raw materials. A possible synthesis mechanism was proposed to explain the formation of (Cr1-xVx)2AlC solid solutions. The lattice parameters, microstructure, and mechanical properties of the (Cr1-xVx)2AlC ceramics were investigated in detail. The results indicated that the lattice parameters increased with the substitution of Cr by V and the aspect ratio of the grain changed from 1.4 to 3.2. The dependence of the mechanical properties on the V content was a single-peak type. The (Cr0.5V0.5)2AlC ceramic possessed the optimal mechanical performance and its Vickers hardness, flexural strength, and fracture toughness reached the maximum values of 5.18 GPa, 402 MPa, 5.91 MPa m1/2, respectively, due to the solid solution effect. The energy-consuming mechanisms of the material were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M.W. Barsoum: The Mn+1AXn phases: A new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 (2000).

    Article  CAS  Google Scholar 

  2. J.C. Schuster, H. Nowotny, and C. Vaccaro: The ternary systems: Cr-Al-C, V-Al-C, and Ti-Al-C and the behavior of H-Phases (M2AlC). J. Solid State Chem. 32 (2), 213 (1980).

    Article  CAS  Google Scholar 

  3. C.F. Hu, H.B. Zhang, F.Z. Li, Q. Huang, and Y.W. Bao: New phases’ discovery in MAX family. Int. J. Refract. Met. Hard Mater. 36, 300 (2013).

    Article  CAS  Google Scholar 

  4. W.B. Tian, P.L. Wang, G.J. Zhang, Y.M. Kan, Y.X. Li, and D.S. Yan: Synthesis and thermal and electrical properties of bulk Cr2AlC. Scr. Mater. 54 (5), 841 (2006).

    Article  CAS  Google Scholar 

  5. G.B. Ying, X.D. He, M.W. Li, W.B. Han, F. He, and S.Y. Du: Synthesis and mechanical properties of high-purity Cr2AlC ceramic. Mater. Sci. Eng., A 528 (6), 2635 (2011).

    Article  Google Scholar 

  6. T.T. Ai: High-temperature oxidation behavior of un-dense Ti3AlC2 material at 1000°C in air. Ceram. Int. 38 (3), 2537 (2012).

    Article  CAS  Google Scholar 

  7. Z.J. Lin, M.S. Li, J.Y. Wang, and Y.C. Zhou: High-temperature oxidation and hot corrosion of Cr2AlC. Acta Mater. 55 (18), 6182 (2007).

    Article  CAS  Google Scholar 

  8. L.O. Xiao, S.B. Li, G.M. Song, and W.G. Sloof: Synthesis and thermal stability of Cr2AlC. J. Eur. Ceram. Soc. 31 (8), 1497 (2011).

    Article  CAS  Google Scholar 

  9. I.M. Low, W.K. Pang, S.J. Kennedy, and R.I. Smith: High-temperature thermal stability of Ti2AlN and Ti4AlN3: A comparative diffraction study. J. Eur. Ceram. Soc. 31, 159 (2011).

    Article  CAS  Google Scholar 

  10. W.B. Tian, Z.M. Sun, H. Hashimoto, and Y.L. Du: Synthesis, microstructure and properties of (Cr1−xVx)2AlC solid solutions. J. Alloys Compd. 484, 130 (2009).

    Article  CAS  Google Scholar 

  11. I. Salama, T. El-Raghy, and M.W. Barsoum: Synthesis and mechanical properties of Nb2AlC and (Ti,Nb)2AlC. J. Alloys Compd. 347, 271 (2002).

    Article  Google Scholar 

  12. F.L. Meng, Y.C. Zhou, and J.Y. Wang: Strengthening of Ti2AlC by substituting Ti with V. Scr. Mater. 53 (12), 1369 (2005).

    Article  CAS  Google Scholar 

  13. M.W. Barsoum, M. Ali, and T. El-Raghy: Processing and characterization of Ti2AlC, Ti2AlN and Ti2AlC0.5N0.5. Metall. Mater. Trans. A 31 (7), 1857 (2000).

    Article  Google Scholar 

  14. S.B. Li, G.P. Bei, C.W. Li, M.X. Ai, H.X. Zhai, and Y. Zhou: Synthesis and deformation microstructure of Ti3SiAl0.2C1.8 solid solution. Mater. Sci. Eng., A 441, 202 (2006).

    Article  Google Scholar 

  15. M.X. Ai, H.X. Zhai, Y. Zhou, Z.Y. Tang, Z.Y. Huang, Z.L. Zhang, and S.B. Li: Synthesis of Ti3AlC2 powders using Sn as an additive. J. Am. Ceram. Soc. 89 (3), 1114 (2006).

    Article  CAS  Google Scholar 

  16. A. Ganguly, T. Zhen, and M.W. Barsoum: Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1−x)C2 (x = 0.5, 0.75) solid solutions. J. Alloys Compd. 376, 287 (2004).

    Article  CAS  Google Scholar 

  17. M. Radovic, A. Ganguly, and M.W. Barsoum: Elastic properties and phonon conductivities of Ti3Al(C0.5,N0.5)2 and Ti2Al(C0.5,N0.5) solid solutions. J. Mater. Res. 23 (6), 1517 (2008).

    Article  CAS  Google Scholar 

  18. J.Y. Wang and Y.C. Zhou: Ab initio elastic stiffness of nano-laminate (MxM′2−xAlC)AlC (M and M′ = Ti, V, Cr) solid solution. J. Phys.: Condens. Matter 16, 2819 (2004).

    CAS  Google Scholar 

  19. Z. Sun, R. Ahuja, and J.M. Schneider: Theoretical investigation of the solubility in (MxM′2−xAlC)AlC (M and M′ = Ti, V, Cr). Phys. Rev. B 68 (22), 224112 (2003).

    Article  Google Scholar 

  20. C.L. Yeh and W.J. Yang: Formation of MAX solid solutions (Ti,V)2AlC and (Cr,V)2AlC with Al2O3 addition by SHS involving aluminothermic reduction. Ceram. Int. 39 (7), 7537 (2013).

    Article  CAS  Google Scholar 

  21. W.B. Yu, S.B. Li, and W.G. Sloof: Microstructure and mechanical properties of a Cr2Al(Si)C solid solution. Mater. Sci. Eng., A 527, 5997 (2010).

    Article  Google Scholar 

  22. E. Clementi, D.L. Raimondi, and W.P. Reinhardt: Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons. J. Chem. Phys. 47 (4), 1300 (1967).

    Article  CAS  Google Scholar 

  23. M.W. Barsoum, A. Murugaiah, S.R. Kalidindi, T. Zhen, and Y. Gogotsi: Kink bands, nonlinear elasticity and nanoindentations in graphite. Carbon 42, 1435 (2004).

    Article  CAS  Google Scholar 

  24. A.G. Zhou and M.W. Barsoum: Kinking nonlinear elastic deformation of Ti3AlC2, Ti2AlC, Ti3Al(C0.5,N0.5)2 and Ti2Al(C0.5,N0.5). J. Alloys Compd. 498 (1), 62 (2010).

    Article  CAS  Google Scholar 

  25. C.F. Hu, F.Z. Li, L.F. He, M.Y. Liu, J. Zhang, J.M. Wang, Y.W. Bao, J.Y. Wang, and Y.C. Zhou: In situ reaction synthesis, electrical and thermal, and mechanical properties of Nb4AlC3. J. Am. Ceram. Soc. 91 (7), 2258 (2008).

    Article  CAS  Google Scholar 

  26. C.F. Hu, L.F. He, M.Y. Liu, X.H. Wang, J.Y. Wang, M.S. Li, and Y.W. Bao, and Y.C. Zhou: In situ reaction synthesis and mechanical properties of V2AlC. J. Am. Ceram. Soc. 91 (12), 4029 (2008).

    Article  CAS  Google Scholar 

  27. Ø. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjölander, and H.E. Ekström: Strengthening mechanisms in solid solution aluminum alloys. Metall. Mater. Trans. A 37 (6), 1999 (2006).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Foundation of Natural Science, China (51272145, 51171096), the Shaanxi Provincial Foundation of Natural Science, China (2010JM6014), and the Graduate Innovation Fund of Shaanxi University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Jiang, H., Wang, F. et al. Synthesis, microstructure evolution, and mechanical properties of (Cr1-xVx)2AlC ceramics by in situ hot-pressing method. Journal of Materials Research 29, 1168–1174 (2014). https://doi.org/10.1557/jmr.2014.91

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.91

Navigation