Skip to main content
Log in

Al stabilized TiC twinning platelets

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Titanium carbide (TiC) twins are believed to be extremely unstable because of their high twin boundary energy. Here, we report that TiC twins are always presented in platelets with dimensions of 2–3 µm in length and less than 300 nm in width. In-depth microstructural characterizations by high-resolution transmission electron microscopy demonstrate that Al atoms at the twin boundary play a decisive role in stabilizing TiC twins. With different amounts of Al, perfect and defective TiC twins are formed. For perfect twins, three types of twin boundaries can be formed depending on the amount of remaining Al at the twin boundary. With inadequate Al, the TiC twins become defective with certain degrees of deviation from the perfect twin orientation. Based on a detailed analysis of the microstructure of the twin boundaries, a mechanism for the formation and stabilization of TiC twins is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. S.D. Luo, Q. Li, J. Tian, C. Wang, M. Yan, G.B. Schaffer, and M. Qian: Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties. Scripta Mater. 69 (1), 29 (2013).

    Article  CAS  Google Scholar 

  2. M. Hsu, M. Meyers, and A. Berkowitz: Synthesis of nanocrystalline titanium carbide by spark erosion. Scripta Metall. Mater. 32 (6), 805 (1995).

    Article  CAS  Google Scholar 

  3. D. Gu, G. Meng, C. Li, W. Meiners, and R. Poprawe: Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement. Scripta Mater. 67 (2), 185 (2012).

    Article  CAS  Google Scholar 

  4. M. Sherif El-Eskandarany: Structure and properties of nanocrystalline TiC full-density bulk alloy consolidated from mechanically reacted powders. J. Alloys Comp. 305 (1), 225 (2000).

    Article  CAS  Google Scholar 

  5. A. Sen, T. Kar, and S.K. Pradhan: One step quickest mechanosynthesis of nanocrystalline Ti0.9Si0.1C and its microstructure characterization. J. Alloys Comp. 557 (0), 47 (2013).

    Article  CAS  Google Scholar 

  6. K. Lu: The future of metals. Science 328 (5976), 319 (2010).

    Article  CAS  Google Scholar 

  7. Y. Tian, B. Xu, D. Yu, Y. Ma, Y. Wang, Y. Jiang, W. Hu, C. Tang, Y. Gao, K. Luo, Z. Zhao, L.M. Wang, B. Wen, J. He, and Z. Liu: Ultrahard nanotwinned cubic boron nitride. Nature 493 (7432), 385 (2013).

    Article  CAS  Google Scholar 

  8. I. Gutierrez-Urrutia and D. Raabe: Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel. Acta Mater. 60 (16), 5791 (2012).

    Article  CAS  Google Scholar 

  9. J. Zhang and Y.C. Zhou: Microstructure, mechanical, and electrical properties of Cu–Ti3AlC2 and in situ Cu–TiCx composites. J. Mater. Res. 23 (4), 924 (2008).

    Article  CAS  Google Scholar 

  10. R. Yu, Q. Zhan, L.L. He, Y.C. Zhou, and H.Q. Ye: Si-induced twinning of TiC and formation of Ti3SiC2 platelets. Acta Mater. 50 (16), 4127 (2002).

    Article  CAS  Google Scholar 

  11. R. Yu, L.L. He, and H.Q. Ye: Effects of Si and Al on twin boundary energy of TiC. Acta Mater. 51 (9), 2477 (2003).

    Article  CAS  Google Scholar 

  12. W.T. Hu, S.C. Liu, B. Wen, J.Y. Xiang, F.S. Wen, B. Xu, J.L. He, D.L. Yu, Y.J. Tian, and Z.Y. Liu: {111}-specific twinning structures in nonstoichiometric ZrC0.6 with ordered carbon vacancies. J. Appl. Crystallogr. 46 (1), 43 (2013).

    Article  CAS  Google Scholar 

  13. H. Zhang, X.H. Wang, Z.J. Li, M.Y. Liu, and Y.C. Zhou: A novel Ni2AlTi-containing composite with excellent wear resistance and anomalous flexural strength. Mater. Sci. Eng., A 597 (0), 70 (2014).

    CAS  Google Scholar 

  14. B.J. Kooi, M. Kabel, A.B. Kloosterman, and J.T.M. De Hosson: Reaction layers around SiC particles in Ti: an electron microscopy study. Acta Mater. 47 (10), 3105 (1999).

    Article  CAS  Google Scholar 

  15. F.R. Chien, S.R. Nutt, and D. Cummings: Defect structures in single crystal TiC. Philos. Mag. A 68 (2), 325 (1993).

    Article  Google Scholar 

  16. J. Venables: Stacking faults in TiC. Phys. Status Solidi B 15 (1), 413 (1966).

    Article  CAS  Google Scholar 

  17. J. Zhang, J.Y. Wang, and Y.C. Zhou: Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu–Ti3AlC2 composites. Acta Mater. 55 (13), 4381 (2007).

    Article  CAS  Google Scholar 

  18. Y.C. Zhou, Z.M. Sun, and B.H. Yu: Microstructure of Ti3SiC2 prepared by the in-situ hot pressing/solid–liquid reaction process. Z. Metallkd. 91 (11), 937 (2000).

    CAS  Google Scholar 

  19. Y.C. Zhou and Z.M. Sun: Crystallographic relations between Ti3SiC2 and TiC. Mater. Res. Innovat. 3 (5), 286 (2000).

    Article  CAS  Google Scholar 

  20. X.H. Wang and Y.C. Zhou: Solid–liquid reaction synthesis of layered machinable Ti3AlC2 ceramic. J. Mater. Chem. 12 (3), 455 (2002).

    Article  CAS  Google Scholar 

  21. Z.J. Lin, M.J. Zhuo, Y.C. Zhou, M.S. Li, and J.Y. Wang: Microstructural characterization of layered ternary Ti2AlC. Acta Mater. 54 (4), 1009 (2006).

    Article  CAS  Google Scholar 

  22. U. Wolf, F. Ernst, T. Muschik, M.W. Finnis, and H.F. Fischmeister: The influence of grain boundary inclination on the structure and energy of ∑ = 3 grain boundaries in copper. Philos. Mag. A 66 (6), 991 (1992).

    Article  CAS  Google Scholar 

  23. L. Liu, J. Wang, S.K. Gong, and S.X. Mao: High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag. Phys. Rev. Lett. 106 (17), 175504 (2011).

    Article  CAS  Google Scholar 

  24. J. Wang, O. Anderoglu, J.P. Hirth, A. Misra, and X. Zhang: Dislocation structures of sigma 3{112} twin boundaries in face centered cubic metals. Appl. Phys. Lett. 95 (2), 021908 (2009).

    Article  Google Scholar 

  25. J. Bezares, S. Jiao, Y. Liu, D. Bufford, L. Lu, X. Zhang, Y. Kulkarni, and R.J. Asaro: Indentation of nanotwinned fcc metals: implications for nanotwin stability. Acta Mater. 60 (11), 4623 (2012).

    Article  CAS  Google Scholar 

  26. V.Y. Markiv, V.V. Burnashova, and V.R. Riabov: A study of the Ti–Fe–Al, Ti–Ni–Al, and Ti–Cu–Al systems. Metallofizika 46 (46), 103 (1973).

    Google Scholar 

  27. K. Zeng, R. Schmid-Fetzer, B. Huneau, P. Rogl, and J. Bauer: The ternary system Al-Ni-Ti part II: thermodynamic assessment and experimental investigation of polythermal phase equilibria. Intermetallics 7 (12), 1347 (1999).

    Article  CAS  Google Scholar 

  28. J.P. Buban, K. Matsunaga, J. Chen, N. Shibata, W.Y. Ching, T. Yamamoto, and Y. Ikuhara: Grain boundary strengthening in alumina by rare earth impurities. Science 311 (5758), 212 (2006).

    Article  CAS  Google Scholar 

  29. Z. Wang, M. Saito, K.P. McKenna, L. Gu, S. Tsukimoto, A.L. Shluger, and Y. Ikuhara: Atom-resolved imaging of ordered defect superstructures at individual grain boundaries. Nature 479 (7373), 380 (2011).

    Article  CAS  Google Scholar 

  30. Y.M. Chiang, A.F. Henriksen, W.D. Kingery, and D. Finello: Characterization of grain-boundary segregation in MgO. J. Am. Ceram. Soc. 64 (7), 385 (1981).

    Article  CAS  Google Scholar 

  31. R.J. Kerans, K.S. Mazdiyasni, R. Ruh, and H.A. Lipsitt: Solubility of metals in substoichiometric TiC1−x. J. Am. Ceram. Soc. 67 (1), 34 (1984).

    Article  CAS  Google Scholar 

  32. N. Shibata, S.J. Pennycook, T.R. Gosnell, G.S. Painter, W.A. Shelton, and P.F. Becher: Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions. Nature 428 (6984), 730 (2004).

    Article  CAS  Google Scholar 

  33. A. Varschavsky and E. Donoso: The kinetics of disperse order development in α-CuAl alloys. Metall. Trans. A 14 (4), 875 (1983).

    Article  CAS  Google Scholar 

  34. F.R. Hensel and E.I. Larsen: Age-hardening copper–titanium alloys. Trans. Am. Inst. Min. Metall. Eng. 99, 55 (1932).

    Google Scholar 

  35. M.V. Itkin and O.A. Shmatko: On the temperature-concentration bound of cellular decomposition in Cu–Ti system. Phys. Met. 4 (4), 806 (1982).

    Google Scholar 

  36. H. Okamoto: Cu–Ti (copper–titanium). J. Phase Equilib. 23 (6), 549 (2002).

    Article  CAS  Google Scholar 

  37. J.F. Nie, Y.M. Zhu, J.Z. Liu, and X.Y. Fang: Periodic segregation of solute atoms in fully coherent twin boundaries. Science 340 (6135), 957 (2013).

    Article  CAS  Google Scholar 

  38. H. Zhang, X.H. Wang, Y.H. Ma, L.C. Sun, L.Y. Zheng, and Y.C. Zhou: Crystal structure determination of nanolaminated Ti5Al2C3 by combined techniques of XRPD, TEM and ab initio calculations. J. Adv. Ceram. 1 (4), 268 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work is supported by the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanchun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, X., Li, Z. et al. Al stabilized TiC twinning platelets. Journal of Materials Research 29, 1113–1121 (2014). https://doi.org/10.1557/jmr.2014.80

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.80

Navigation