Skip to main content
Log in

Influence of Al addition on microstructure and properties of Cu–Fe-based coatings by laser induction hybrid rapid cladding

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To establish the relationships between composition, microstructure, and properties, the influence of Al addition on microstructure and properties of Cu–Fe-based coatings by laser induction hybrid rapid cladding was studied. With increasing Al content, the main diffraction peaks of ε-Cu phase are weakened but those of α-Fe phase are strengthened, the size of Fe-rich particles generally increases but the dendrite arm spacing is further reduced, and the number of Cu-rich grains precipitated inside the Fe-rich particles increases but the size reduces. Moreover, when the amount of Al is increased, the improvement in electrochemical resistance is attributed to large amounts of fine Cu-rich grains precipitated inside the Fe-rich particles, which results in large anode–small cathode effect. The microhardness also increases with Al content and the microhardness of Cu53.5Fe36Al10C0.5 coating is approximately 2.4 times higher than that of copper alloy substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. X. Luo, Y. Yang, C. Liu, T. Xu, M. Yuan, and B. Huang: The thermal expansion behavior of unidirectional SiC fiber-reinforced Cu-matrix composites. Scripta Mater. 58, 401 (2008).

    Article  CAS  Google Scholar 

  2. J.S. Kim, Y.S. Kwon, O.I. Lomovsky, D.V. Dudina, V.F. Kosarev, S.V. Klinkov, D.H. Kwon, and I. Smurov: Cold spraying of in situ produced TiB2–Cu nanocomposite powders. Compos. Sci. Technol. 67, 2292 (2007).

    Article  CAS  Google Scholar 

  3. Q. Liu, X. He, S. Ren, T. Liu, Q. Kang, and X. Qu: Fabrication and thermal conductivity of copper matrix composites reinforced with Mo2C or TiC coated graphite fibers. Mater. Res. Bull. 48, 4811 (2013).

    Article  CAS  Google Scholar 

  4. P.K. Deshpande and R.Y. Lin: Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity. Mater. Sci. Eng., A 418, 137 (2006).

    Article  Google Scholar 

  5. D. Gu, Y. Shen, L. Zhao, J. Xiao, P. Wu, and Y. Zhu: Effect of rare earth oxide addition on microstructures of ultra-fine WC–Co particulate reinforced Cu matrix composites prepared by direct laser sintering. Mater. Sci. Eng., A 445–446, 316 (2007).

    Article  Google Scholar 

  6. Y.T. Pei, V. Ocelik, and J.Th.M. De Hosson: SiCp/Ti6Al4V functionally graded materials produced by laser melt injection. Acta Mater. 50, 2035 (2002).

    Article  CAS  Google Scholar 

  7. C.C. Leong, L. Lu, J.Y.H. Fuh, and Y.S. Wong: In-situ formation of copper matrix composites by laser sintering. Mater. Sci. Eng., A 338, 81 (2002).

    Article  Google Scholar 

  8. J. He, J. Zhao, Y. Yang, X. Wang, and L. Gao: Microstructure development in finely atomized droplets of copper-iron alloys. Metall. Mater. Trans. A 36, 2449 (2005).

    Article  Google Scholar 

  9. L. Fu, J. Yang, Q. Bi, and W. Liu: Combustion synthesis immiscible nanostructured Fe–Cu alloy. J. Alloys Compd. 482, L22 (2009).

    Article  CAS  Google Scholar 

  10. A. Munitz, A.M. Bamberger, S. Wannaparhun, and R. Abbaschian: Effects of supercooling and cooling rate on the microstructure of Cu–Co–Fe alloys. J. Mater. Sci. 41, 2749 (2006).

    Article  CAS  Google Scholar 

  11. I. Ohnuma, T. Saegusa, Y. Takaku, C.P. Wang, and X.J. Liu: Microstructural evolution of alloys powder for electronic materials with liquid miscibility gap. J. Electron. Mater. 38, 2 (2009).

    Article  CAS  Google Scholar 

  12. C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida: Formation of immiscible alloy powders with egg-type microstructure. Science 297, 990 (2002).

    Article  CAS  Google Scholar 

  13. A. Munitz: Metastable liquid phase separation in tungsten inert gas and electron beam copper/stainless-steel welds. J. Mater. Sci. 30, 2901 (1995).

    Article  CAS  Google Scholar 

  14. D.W. Zeng, C.S. Xie, and M.Q. Wang: In situ synthesis and characterization of Fep/Cu composite coating on SAE 1045 carbon steel by laser cladding. Mater. Sci. Eng., A 344, 357 (2003).

    Article  Google Scholar 

  15. A. Munitz, A. Venkert, P. Landau, M.J. Kaufman, and R. Abbaschian: Microstructure and phase selection in supercooled copper alloys exhibiting metastable liquid miscibility gaps. J. Mater. Sci. 47, 7955 (2012).

    Article  CAS  Google Scholar 

  16. R.P. Shi, C.P. Wang, D. Wheeler, X.J. Liu, and Y. Wang: Formation mechanisms of self-organized core/shell and core/shell/corona microstructures in liquid droplets of immiscible alloys. Acta Mater. 61, 1229 (2013).

    Article  CAS  Google Scholar 

  17. N. Liu: Investigation on the phase separation in undercooled Cu–Fe melts. J. Non-Cryst. Solids 358, 196 (2012).

    Article  CAS  Google Scholar 

  18. S. Curiotto, L. Battezzati, E. Johnson, and N. Pryds: Thermodynamics and mechanism of demixing in undercooled Cu–Co–Ni alloys. Acta Mater. 55, 6642 (2007).

    Article  CAS  Google Scholar 

  19. X.B. Zhou, and J.Th.M. De Hosson: Dependence of surface residual stress on laser power and laser scan velocity. Scripta Met. Mater. 25, 2007 (1991).

    Article  CAS  Google Scholar 

  20. P.B. Kadolkar, T.R. Watkins, J.Th.M. De Hosson, B.J. Kooi, and N.B. Dahotre: State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys. Acta Mater. 55, 1203 (2007).

    Article  CAS  Google Scholar 

  21. S. Zhou, Y. Huang, X. Zeng, and Q. Hu: Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding. Mater. Sci. Eng., A 480, 564 (2008).

    Article  Google Scholar 

  22. S. Zhou and X. Zeng: Growth characteristics and mechanism of carbides precipitated in WC–Fe composite coatings by laser induction hybrid rapid cladding. J. Alloys Compd. 505, 685 (2010).

    Article  CAS  Google Scholar 

  23. Y.T. Pei and J.Th.M. De Hosson: Functionally graded materials produced by laser cladding. Acta Mater. 48, 2617 (2000).

    Article  CAS  Google Scholar 

  24. P. Gilgien and W. Kurz: Laser Processing: Surface Treatment and Film Deposition, edited by, J. Mazunder, O. Conde, R. Vilar and W. Steen. (NATO ASI, Proc. 7, Sesimbra, Portugal, 1994); p. 3.

  25. M. Hag and H. Hügel: CO2 laser light absorption characteristics of metal powders. J. Appl. Phys. 79, 3835 (1996).

    Article  Google Scholar 

  26. Q. Chen and Z.P. Jin: The Fe–Cu system: A thermodynamic evaluation. Metall. Mater. Trans. A 26, 417 (1995).

    Article  Google Scholar 

  27. E.M. Andrade: Theory of viscosity of liquids. Philos. Mag. 17, 497 (1934).

    Article  CAS  Google Scholar 

  28. N. Liu, F. Liu, Z. Cheng, G. Yang, C. Yang, and Y. Zhou: Liquid-phase separation in rapid solidification of undercooled Fe–Co–Cu melts. J. Mater. Sci. Technol. 28, 622 (2012).

    Article  CAS  Google Scholar 

  29. Y.S. Choi, D.H. Shin, and J.G. Kim: Sacrificial anode cathodic protection of aluminum-coated steel for automotive mufflers. Corrosion 63, 522 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The support of this work by the Key Technology Projects of Jiangxi Province in China (Grant No. 20122BBE500031) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengfeng Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, S., Dai, X., Xiong, Z. et al. Influence of Al addition on microstructure and properties of Cu–Fe-based coatings by laser induction hybrid rapid cladding. Journal of Materials Research 29, 865–873 (2014). https://doi.org/10.1557/jmr.2014.64

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.64

Navigation