Skip to main content
Log in

Composition-controlled ternary Rh–Pd–Pt solid-solution alloy nanoparticles by laser irradiation of mixed solution of metallic ions

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present a bottom-up fabrication route to fabricate solid-solution Rh–Pd–Pt ternary alloy nanoparticles (NPs), with well-controlled compositions through femtosecond laser irradiation of a mixed solution of metallic ions, without any reducing agents and complicated processes. The structure of fabricated NPs was crystalline, and formation of solid-solution alloy formation was confirmed by electron and x-ray diffraction measurements. The crystalline nature of alloy NPs was also confirmed through high-resolution transmission electron microscope measurement. According to energy dispersive spectroscopy analysis, elemental composition of an individual NP was almost the same as the initial feeding ratio of ions in the mixed solutions. The electronic state of the element in alloy NPs was confirmed to be pure metal by XPS measurement. The structural studies of Rh–Pd–Pt NPs suggested that the demonstrated technique opens up a new dimension for the fabrication of NPs, which has well-controlled properties for practical use in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. S. Link, Z.L. Wang, and M.A. El-Sayed: Alloy formation of gold–silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B 103, 3529 (1999).

    Article  CAS  Google Scholar 

  2. RF. Service: Small clusters hit the big time. Science 271, 920 (1996).

    Article  Google Scholar 

  3. Y. Zeng, Y. Wang, J. Jiang, and Z. Jin: Rh nanoparticle catalysed hydrogenation of olefins in the thermoregulated ionic liquid. Catal. Commun. 19, 70 (2012).

    Article  CAS  Google Scholar 

  4. J.R. Renzas, W. Huang, Y. Zhang, M.E. Grass, and G.A. Somorjai: Rh1-xPdx nanoparticle composition dependence in CO oxidation by NO. Catal. Lett. 141, 235 (2011).

    Article  CAS  Google Scholar 

  5. H. Zhang and N. Toshima: Preparation of novel Au-Pt-Ag trimetallic nanoparticles and their high catalytic activity for aerobic glucose oxidation. Appl. Catal. A: General 400, 9 (2011).

    Article  CAS  Google Scholar 

  6. M.A. Newton, B. Jyoti, A.J. Dent, S. Diaz-Moreno, S.G. Fiddy, and J. Evans: The impact of phase changes, alloying and segregation in supported RhPd catalysts during selective NO reduction by H2. Chem. Phys. Chem. 5, 1056 (2004).

    Article  CAS  Google Scholar 

  7. J.R. Renzas, W. Huang, Y. Zhang, M.E. Grass, D.T. Hoang, S. Alayoglu, D.R. Butcher, F.F. Tao, Z. Liu, and G.A. Somoraji: Rh(1-x)Pd(x) nanoparticle composition dependence in CO oxidation by oxygen: Catalytic activity enhancement in bimetallic systems. Phys. Chem. Chem. Phys. 13, 2556 (2010).

    Article  Google Scholar 

  8. K. Siepen, H. Bönnemann, W. Brijoux, J. Rothe, and J. Hormes: EXAFS/XANES, chemisorption and IR investigation of colloidal Pt/Rh bimetallic catalysts. Appl. Organomet. Chem. 14, 549 (2000).

    Article  CAS  Google Scholar 

  9. C.E. Lyman, R.E. Lakis, and H.G. Stenger: X-ray emission spectrometry of phase separation in Pt-Rh nanoparticles for nitric oxide reduction. Ultramicroscopy 58, 25 (1995).

    Article  CAS  Google Scholar 

  10. X. Zhang, F. Zhang, and K.Y. Chan: Preparation of Pt–Ru–Co trimetallic nanoparticles and their electrocatalytic properties. Catal. Commun. 5, 749 (2004).

    Article  CAS  Google Scholar 

  11. L. Wang and Y. Yamauchi: Strategic synthesis of trimetallic Au@Pd@Pt core-shell nanoparticles from Poly(vinylpyrrolidone)-based aqueous solution toward highly active electrocatalysts. Chem. Mater. 23, 2457 (2011).

    Article  CAS  Google Scholar 

  12. H. Zhang and N. Toshima: Glucose oxidation using Au-containing bimetallic and trimetallic nanoparticles. Catal. Sci. Technol. 3, 268 (2013).

    Article  CAS  Google Scholar 

  13. T. Matsushita, Y. Shiraishi, S. Horiuchi, and N. Toshima: Synthesis and catalysis of polymer-protected Pd-Ag-Rh trimetallic nanoparticles with a core–shell structure. Bull. Chem. Soc. Jpn. 80, 1217 (2007).

    Article  CAS  Google Scholar 

  14. S.H. Tsai, Y.H. Liu, P.L. Wu, and C.H. Yeh: Preparation of Au–Ag–Pd trimetallic nanoparticles and their application as catalysts. J. Mater. Chem. 13, 978 (2003).

    Article  CAS  Google Scholar 

  15. G.C. Bond: The electronic structure of platinum-gold alloy particles. Platinum. Met. Rev. 51, 63 (2007).

    Article  CAS  Google Scholar 

  16. Y. Herbani, T. Nakamura, and S. Sato: Femtosecond laser-induced formation of gold rich nanoalloys from the aqueous mixture of gold-silver ions. J. Nanomater. 2010, 154210 (2010).

    Article  Google Scholar 

  17. T. Nakamura, Y. Herbani, and S. Sato: Fabrication of solid-solution gold-platinum nanoparticles with controllable compositions by high-intensity laser irradiation of solution. J. Nanopart. Res. 14, 785 (2012).

    Article  Google Scholar 

  18. M.S.I. Sarker, T. Nakamura, Y. Herbani, and S. Sato: Fabrication of Rh based solid solution bimetallic alloy nanoparticles with fully tunable composition through femtosecond laser irradiation in aqueous solution. Appl. Phys. A 110, 145 (2013).

    Article  CAS  Google Scholar 

  19. Y. Herbani, T. Nakamura, and S. Sato: Synthesis of platinum-based binary and ternary alloy nanoparticles in intense laser field. J. Coll. Interface Sci. 375, 78 (2012).

    Article  CAS  Google Scholar 

  20. S. Pommeret, F. Gobert, M. Mostafavi, I. Lampre, and J.C. Mialocq: Femtochemistry of hydrated electron at decimolar concentration. J. Phys. Chem. A 105, 11400 (2001).

    Article  CAS  Google Scholar 

  21. S.L. Chin and S. Legacé: Generation of H2, O2 and H2O2 from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization. Appl. Opt. 35, 907 (1996).

    Article  CAS  Google Scholar 

  22. K. Yuge: Concentration effects on segregation behavior of Pt-Rh nanoparticles. Phys Rev B 84, 085451 (2011).

    Article  Google Scholar 

  23. L. Vegard and H. Dale: Untersuchungen ueber Mischkristalle und Legierungen. J. Kristallogr. 67, 148 (1928).

    CAS  Google Scholar 

  24. J. Jakobi, A. Menendez-Manjon, V.S.K. Chakravadhanula, L. Kienle, P. Wagener, and S. Barcikowski: Stoichiometry of alloy nanoparticles from laser ablation of PtIr in acetone and their electrophoretic deposition on PtIr electrodes. Nanotechnology 22, 145601 (2011).

    Article  Google Scholar 

  25. H.R. Kuhn and D. Günter: Elemental fractionation studies in laser ablation inductively coupled plasma mass spectrometry on laser-induced brass aerosols. Anal. Chem. 75, 747 (2003).

    Article  CAS  Google Scholar 

  26. B.V. Christ: Hand Book of Monochromatic XPS Spectra (Wiley, New York, 2000).

    Google Scholar 

  27. J.Y. Park, Y. Zhang, M. Grass, T. Zhang, and G.A. Somoraji: Tuning of catalytic CO oxidation by changing composition of Rh-Pt bimetallic nanoparticles. Nano. Lett. 8, 673 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Samiul Islam Sarker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarker, M.S.I., Nakamura, T. & Sato, S. Composition-controlled ternary Rh–Pd–Pt solid-solution alloy nanoparticles by laser irradiation of mixed solution of metallic ions. Journal of Materials Research 29, 856–864 (2014). https://doi.org/10.1557/jmr.2014.62

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.62

Navigation