Skip to main content

Advertisement

Log in

Mechanical properties of Bombyx mori silkworm silk subjected to microwave radiation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microwave irradiation has the potential to affect the mechanical properties of natural silks. We explored several tensile properties of Bombyx mori silkworm cocoon fibers (yield stress and strain, breaking stress and strain, Young’s modulus, toughness) as a function of microwave exposure time; samples were stored in a desiccating environment prior to tensile testing. Microwave radiation did not significantly affect any of these properties. We conclude that silk can be incorporated as a reinforcing fiber—without significant deterioration in properties—into materials that are subjected to microwave processing and/or in-service microwave radiation. Microwave exposure decreased the Weibull modulus of fibers, indicating that fracture becomes less predictable as a result of the exposure. Since microwave exposure affects failure predictability but not the average breaking strength of fibers, silk is best suited for use in composite materials if microwave exposure is likely, so that load can be transferred from weaker to stronger fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. D.E. Clark and W.H. Sutton: Microwave processing of materials. Annu. Rev. Mater. Sci. 26, 299 (1996).

    Article  CAS  Google Scholar 

  2. L. Zhou, N. Yan, H. Zhang, X. Zhou, Q. Pu, and Z. Hu: Microwave-accelerated derivatization for capillary electrophoresis with laser-induced fluorescence detection: A case study for determination of histidine, 1- and 3-methylhistidine in human urine. Talanta 82(1), 72 (2010).

    Article  CAS  Google Scholar 

  3. J.P. Craven, R. Cripps, and C. Viney: Evaluating the silk/epoxy interface by means of the microbond test. Composites Part A 31, 653 (2000).

    Article  Google Scholar 

  4. N.A. Morrison, F.I. Bell, A. Beautrait, J. Ritchie, C. Smith, I.J. McEwen, and C. Viney: Do natural silks make good engineering materials? In Biological and Bioinspired Materials and Devices, J. Aizenberg, C. Orme, W.J. Landis, and R. Wang eds.; Materials Research Society, Warrendale, PA, 2004, pp. 97–102(W8.4.1–W8.4.6).

    Google Scholar 

  5. E.J. Reed and C. Viney: The effect of microwave radiation on tensile properties of silkworm (B. mori) silk. In Soft Matter, Biological Materials and Biomedical Materials — Synthesis, Characterization and Applications, A.J. Nolte, K. Shiba, R. Narayan, and D. Nolte eds.; Cambridge University Press, New York, NY, 2011, pp. 161–172.

    Google Scholar 

  6. E.J. Reed, L.L. Bianchini, and C. Viney: Sample selection, preparation methods, and the apparent tensile properties of silkworm (B. mori) cocoon silk. Biopolymers 97, 397 (2012).

    Article  CAS  Google Scholar 

  7. R.D. Knight: Physics for Scientists and Engineers: A Strategic Approach (Addison Wesley, San Francisco, CA, 2004), p. 527.

    Google Scholar 

  8. E.J. Reed: Effects of Microwave Radiation on Selected Mechanical Properties of Silk. PhD dissertation, Biological Engineering and Small-Scale Technologies, UC Merced, 2013 (http://www.escholarship.org/uc/item/7fj44148).

  9. E.J. Reed and C. Viney: Calibrating the power of a domestic microwave oven. PLOS One (2013).

  10. G.R. Login, J.B. Leonard, and A.M. Dvorak: Calibration and standardization of microwave ovens for fixation of brain and peripheral nerve tissue. Methods 15(2), 107 (1998).

    Article  CAS  Google Scholar 

  11. C. Viney: Untangling a sticky problem: The tensile properties of natural silks. In Mechanics of Biological Systems and Materials, Vol. 5: B.C. Prorok, F. Barthelat, C.S. Korach, K.J. Grande-Allen, E. Lipke, G. Lykofatitits, and P. Zavattieri, ed.; Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics, Springer, New York, NY, 2013, pp. 127–134.

    Google Scholar 

  12. C. Viney: From natural silks to new polymer fibres. J. Text. Inst. 91(3), 2 (2000).

    Article  Google Scholar 

  13. M. Sullivan, III: Statistics: Informed Decisions Using Data, 2nd ed. (Pearson Prentice Hall, Upper Saddle River, NJ, 2007).

    Google Scholar 

  14. C. Fu, D. Porter, and Z. Shao: Moisture effects on Antheraea pernyi silk’s mechanical property. Macromolecules 42, 7877 (2009).

    Article  CAS  Google Scholar 

  15. X. Hu, K. Shmelev, L. Sun, E.-S. Gil, S.-H. Park, P. Cebe, and D.L. Kaplan: Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 12(5), 1686 (2011).

    Article  CAS  Google Scholar 

  16. R.W. Work: A comparative study of the supercontraction of major ampullate silk fibers of orb-web-building spiders (araneae). J. Arachnology 9, 299 (1981).

    Google Scholar 

  17. F.I. Bell, I.J. McEwen, and C. Viney: Supercontraction stress in wet spider dragline. Nature 416, 37 (2002).

    Article  CAS  Google Scholar 

  18. J. Pérez-Rigueiro, M. Elices, and G.V. Guinea: Controlled supercontraction tailors the tensile behaviour of spider silk. Polymer 44, 3733 (2003).

    Article  Google Scholar 

  19. J. Pérez-Rigueiro, C. Viney, J. Llorca, and M. Elices: Mechanical properties of silkworm silk in liquid media. Polymer 41, 8433 (2000).

    Article  Google Scholar 

  20. K.N. Savage, P.A. Guerette, and J.M. Gosline: Supercontraction stress in spider webs. Biomacromolecules 5, 675 (2004).

    Article  CAS  Google Scholar 

  21. J. Pérez-Rigueiro, C. Viney, J. Llorca, and M. Elices: Silkworm silk as an engineering material. J. Appl. Polym. Sci. 70(12), 2439 (1998).

    Article  Google Scholar 

  22. H-P. Zhao, X-Q. Feng, and H-J. Shi: Variability in mechanical properties of Bombyx mori silk. Mater. Sci. Eng., C 27, 675 (2007).

    Article  CAS  Google Scholar 

  23. R.B. Abernethy: The New Weibull Handbook: Reliability & Statistical Analysis for Predicting Life, Safety, Survivability, Risk, Cost and Warranty Claims, 5th ed. (Robert B. Abernethy, North Palm Beach, FL, 2006).

    Google Scholar 

  24. J.C. Fothergill: Estimating the cumulative probability of failure data points to be plotted on Weibull and other probability paper. IEEE Trans. Electr. Insul. 25(3), 489 (1990).

    Article  Google Scholar 

  25. D. Porter, J. Guan, and F. Vollrath: Spider silk: Super material or thin fibre?Adv. Mater. 25(9), 1275 (2013).

    Article  CAS  Google Scholar 

  26. H-P. Zhao, X-Q. Feng, W-Z. Cui, and F-Z. Zou: Mechanical properties of silkworm cocoon pelades. Eng. Fract. Mech. 74, 1953 (2007).

    Article  Google Scholar 

  27. S. Keten, Z. Xu, B. Ihle, and M.J. Buehler: Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 9, 359 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

All silkworm cocoons used in this study were provided by Marian Goldsmith, Department of Biological Sciences, University of Rhode Island. Michael Colvin (School of Natural Sciences, University of California, Merced) is gratefully acknowledged for recommendations regarding nonparametric statistical tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Viney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, E.J., Viney, C. Mechanical properties of Bombyx mori silkworm silk subjected to microwave radiation. Journal of Materials Research 29, 833–842 (2014). https://doi.org/10.1557/jmr.2014.54

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.54

Navigation