Skip to main content
Log in

Spectroscopic studies of nucleic acid additions during seed-mediated growth of gold nanoparticles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of adding nucleic acids to gold seeds during the growth stage of either nanospheres or nanorods was investigated using UV–Vis spectroscopy to reveal any oligonucleotide base or structure-specific effects on nanoparticle growth kinetics or plasmonic signatures. Spectral data indicate that the presence of DNA duplexes during seed aging drastically accelerated nanosphere growth while the addition of single-stranded polyadenine at any point during seed aging induces nanosphere aggregation. For seeds added to a gold nanorod growth solution, single-stranded polythymine induces a modest blue shift in the longitudinal peak wave length. Moreover, a particular sequence comprised of 50% thymine bases was found to induce a faster, more dramatic blue shift in the longitudinal peak wave length compared to any of the homopolymer incubation cases. Monomeric forms of the nucleic acids, however, do not yield discernable spectral differences in any of the gold suspensions studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. C.J. Murphy, L.B. Thompson, A.M. Alkilany, P.N. Sisco, S.P. Boulos, S.T. Sivapalan, J.A. Yang, D.J. Chernak, and J. Huang: The many faces of gold nanorods. J. Phys. Chem. Lett. 1, 2867 (2010).

    CAS  Google Scholar 

  2. S.E. Lohse and C.J. Murphy: The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 25, 1250 (2013).

    CAS  Google Scholar 

  3. P.K. Jain, K.S. Lee, I.H. El-Sayed, and M.A. El-Sayed: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238 (2006).

    CAS  Google Scholar 

  4. F. Xia, X. Zuo, R. Yang, Y. Xiao, D. Kang, A. Vallée-Bélisle, X. Gong, J.D. Yuen, B.B.Y. Hsu, and A.J. Heeger: Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc. Natl. Acad. Sci. U. S. A. 107, 10837 (2010).

    CAS  Google Scholar 

  5. T.A. Taton, C.A. Mirkin, and R.L. Letsinger: Scanometric DNA array detection with nanoparticle probes. Science 289, 1757 (2000).

    Article  CAS  Google Scholar 

  6. P.K. Jain, X. Huang, I.H. El-Sayed, and M.A. El-Sayed: Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578 (2008).

    CAS  Google Scholar 

  7. J.J. Storhoff, R. Elghanian, R.C. Mucic, C.A. Mirkin, and R.L. Letsinger: One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120, 1959 (1998).

    CAS  Google Scholar 

  8. C. Mirkin, R. Letsinger, and R. Mucic: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607 (1996).

    CAS  Google Scholar 

  9. M.K. Gupta, T. Konig, R. Near, D. Nepal, L.F. Drummy, S. Biswas, S. Naik, R.A. Vaia, M.A. El-Sayed, and V.V. Tsukruk: Surface assembly and plasmonic properties in strongly coupled segmented gold nanorods. Small 9, 2979 (2013).

    CAS  Google Scholar 

  10. P. Sandström, M. Boncheva, and B. Åkerman: Nonspecific and thiol-specific binding of DNA to gold nanoparticles. Langmuir 19, 7537 (2003).

    Google Scholar 

  11. S.K. Balasubramanian, L. Yang, L-Y.L. Yung, C-N. Ong, W-Y. Ong, and L.E. Yu: Characterization, purification, and stability of gold nanoparticles. Biomaterials 31, 9023 (2010).

    CAS  Google Scholar 

  12. D.A. Giljohann, D.S. Seferos, W.L. Daniel, M.D. Massich, P.C. Patel, and C.A. Mirkin: Gold nanoparticles for biology and medicine. Angew. Chem., Int. Ed. Engl. 49, 3280 (2010).

    CAS  Google Scholar 

  13. X. Huang, I.H. El-Sayed, W. Qian, and M.A. El-Sayed: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115 (2006).

    CAS  Google Scholar 

  14. E.E. Bedford, J. Spadavecchia, C-M. Pradier, and F.X. Gu: Surface plasmon resonance biosensors incorporating gold nanoparticles. Macromol. Biosci. 12, 724 (2012).

    CAS  Google Scholar 

  15. X. Huang, S. Neretina, and M.A. El-Sayed: Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 21, 4880 (2009).

    CAS  Google Scholar 

  16. B. Nikoobakht and M.A. El-Sayed: Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957 (2003).

    CAS  Google Scholar 

  17. F. Hubert, F. Testard, G. Rizza, and O. Spalla: Nanorods versus nanospheres: A bifurcation mechanism revealed by principal component TEM analysis. Langmuir 26, 6887 (2010).

    CAS  Google Scholar 

  18. X. Liu, M. Atwater, J. Wang, and Q. Huo: Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf., B 58, 3 (2007).

    CAS  Google Scholar 

  19. N.N. Long, L.V. Vu, C.D. Kiem, S.C. Doanh, C.T. Nguyet, P.T. Hang, N.D. Thien, and L.M. Quynh: Synthesis and optical properties of colloidal gold nanoparticles. J. Phys.: Conf. Ser. 187, 012026 (2009).

    Google Scholar 

  20. A. Gole and C.J. Murphy: Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chem. Mater. 16, 3633 (2004).

    CAS  Google Scholar 

  21. X.C. Jiang and M.P. Pileni: Gold nanorods: Influence of various parameters as seeds, solvent, surfactant on shape control. Colloids Surf., A 295, 228 (2007).

    CAS  Google Scholar 

  22. T. Placido, R. Comparelli, F. Giannici, P.D. Cozzoli, G. Capitani, M. Striccoli, A. Agostiano, and M.L. Curri: Photochemical synthesis of water-soluble gold nanorods: The role of silver in assisting anisotropic growth. Chem. Mater. 21, 4192 (2009).

    CAS  Google Scholar 

  23. C.J. Orendorff and C.J. Murphy: Quantitation of metal content in the silver-assisted growth of gold nanorods. J. Phys. Chem. B 110, 3990 (2006).

    CAS  Google Scholar 

  24. C.J. Murphy, L.B. Thompson, D.J. Chernak, J.A. Yang, S.T. Sivapalan, S.P. Boulos, J. Huang, A.M. Alkilany, and P.N. Sisco: Gold nanorod crystal growth: From seed-mediated synthesis to nanoscale sculpting. Curr. Opin. Colloid Interface Sci. 16, 128 (2011).

    CAS  Google Scholar 

  25. C. Bullen, P. Zijlstra, E. Bakker, M. Gu, and C. Raston: Chemical kinetics of gold nanorod growth in aqueous CTAB solutions. Cryst. Growth Des. 11, 3375 (2011).

    CAS  Google Scholar 

  26. Y. Ofir, B. Samanta, and V.M. Rotello: Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem. Soc. Rev. 37, 1814 (2008).

    CAS  Google Scholar 

  27. S.K. Ghosh and T. Pal: Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 107, 4797 (2007).

    CAS  Google Scholar 

  28. N.L. Rosi and C.A. Mirkin: Nanostructures in biodiagnostics. Chem. Rev. 105, 1547 (2005).

    CAS  Google Scholar 

  29. N. Geerts and E. Eiser: DNA-functionalized colloids: Physical properties and applications. Soft Matter 6, 4647 (2010).

    CAS  Google Scholar 

  30. J. Shin, X. Zhang, and J. Liu: DNA-functionalized gold nanoparticles in macromolecularly crowded polymer solutions. J. Phys. Chem. B 116, 13396 (2012).

    CAS  Google Scholar 

  31. B.D. Smith, N. Dave, P-J.J. Huang, and J. Liu: Assembly of DNA-functionalized gold nanoparticles with gaps and overhangs in linker DNA. J. Phys. Chem. C 115, 7851 (2011).

    CAS  Google Scholar 

  32. D.L. Feldheim and B.E. Eaton: Selection of biomolecules capable of mediating the formation of nanocrystals. ACS Nano 1, 154 (2007).

    CAS  Google Scholar 

  33. J. Kim, Y. Rheem, B. Yoo, Y. Chong, K.N. Bozhilov, D. Kim, M.J. Sadowsky, H-G. Hur, and N.V. Myung: Peptide-mediated shape- and size-tunable synthesis of gold nanostructures. Acta Biomater. 6, 2681 (2010).

    CAS  Google Scholar 

  34. S. Brown, M. Sarikaya, and E. Johnson: A genetic analysis of crystal growth. J. Mol. Biol. 299, 725 (2000).

    CAS  Google Scholar 

  35. S.A. Kumar, Y-A. Peter, and J.L. Nadeau: Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19, 495101 (2008).

    Google Scholar 

  36. J.L. Gardea-Torresdey, J.G. Parsons, E. Gomez, J. Peralta-Videa, H.E. Troiani, P. Santiago, and M.J. Yacaman: Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett. 2, 397 (2002).

    CAS  Google Scholar 

  37. C. Radloff and R.A. Vaia: Metal nanoshell assembly on a virus bioscaffold. Nano Lett. 5, 1187 (2005).

    CAS  Google Scholar 

  38. L. Berti and G.A. Burley: Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. Nat. Nanotechnol. 3, 81 (2008).

    CAS  Google Scholar 

  39. S.R. Bigham and J.L. Coffer: The influence of adenine content on the properties of Q-CdS clusters stabilized by polynucleotides. Colloids Surf., A 95, 211 (1995).

    CAS  Google Scholar 

  40. A.A. Zinchenko, K. Yoshikawa, and D. Baigl: DNA-templated silver nanorings. Adv. Mater. 17, 2820 (2005).

    CAS  Google Scholar 

  41. Y. Lin, M. Yin, F. Pu, J. Ren, and X. Qu: DNA-templated silver nanoparticles as a platform for highly sensitive and selective fluorescence turn-on detection of dopamine. Small 7, 1557 (2011).

    CAS  Google Scholar 

  42. Z. Wang, L. Tang, L.H. Tan, J. Li, and Y. Lu: Discovery of the DNA “genetic code” for abiological gold nanoparticle morphologies. Angew. Chem., Int. Ed. Engl. 51, 9078 (2012).

    CAS  Google Scholar 

  43. Z. Wang, J. Zhang, J.M. Ekman, P.J.A. Kenis, and Y. Lu. DNA-mediated control of metal nanoparticle shape: One-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. Nano Lett. 10, 1886 (2010).

    CAS  Google Scholar 

  44. L.K. Wolf, Y. Gao, and R.M. Georgiadis: Sequence-dependent DNA immobilization: Specific versus nonspecific contributions. Langmuir 20, 3357 (2004).

    CAS  Google Scholar 

  45. J. Liu: Adsorption of DNA onto gold nanoparticles and graphene oxide: Surface science and applications. Phys. Chem. Chem. Phys. 14, 10485 (2012).

    CAS  Google Scholar 

  46. H. Kimura-Suda, D.Y. Petrovykh, M.J. Tarlov, and L.J. Whitman: Base-dependent competitive adsorption of single-stranded DNA on gold. J. Am. Chem. Soc. 125, 9014 (2003).

    CAS  Google Scholar 

  47. J.J. Storhoff, R. Elghanian, C.A. Mirkin, and R.L. Letsinger: Sequence-dependent stability of DNA-modified gold nanoparticles. Langmuir 18, 6666 (2002).

    CAS  Google Scholar 

  48. H. Li, E. Nelson, A. Pentland, J. Buskirk, and L. Rothberg: Assays based on differential adsorption of single-stranded and double-stranded DNA on unfunctionalized gold nanoparticles in a colloidal suspension. Plasmonics 2, 165 (2007).

    CAS  Google Scholar 

  49. B. Nikoobakht and M.A. El-Sayed: Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 17, 6368 (2001).

    CAS  Google Scholar 

  50. D. Nykypanchuk, M.M. Maye, D. van der Lelie, and O. Gang: DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549 (2008).

    CAS  Google Scholar 

  51. K.S. Lee and M.A. El-Sayed: Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 110, 19220 (2006).

    CAS  Google Scholar 

  52. D.A. Zweifel and A. Wei: Sulfide-arrested growth of gold nanorods. Chem. Mater. 17, 4256 (2005).

    CAS  Google Scholar 

  53. S. Eustis and M.A. El-Sayed: Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum. J. Appl. Phys. 100, 044324 (2006).

    Google Scholar 

  54. S. Link and M.A. El-Sayed: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212 (1999).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the funding support of GT-AFOSR BIONIC Center of Excellence (FA9550-09-1-0162) and AFRL/RX. M.T. also acknowledges support of a NIH Training Grant (T32, NIBIB, T32EB006343-02), NSF Graduate Research Fellowship, and a GAANN Fellowship. Flow cytometry studies were carried out at the Petit Institute for Bioengineering and Bioscience (IBB) Core Lab facilities. TEM characterization was carried out in the Center for Nanostructure Characterization at the Georgia Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria T. Milam.

Additional information

Supplementary Material

To view supplementary material for this article, please visit http://dx.doi.org/jmr.2014.409. TEM micrographs and additional UV-Vis spectra of nanoparticle suspensions (PDF).

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapp, M.J.N., Sullivan, R.S., Dennis, P. et al. Spectroscopic studies of nucleic acid additions during seed-mediated growth of gold nanoparticles. Journal of Materials Research 30, 666–676 (2015). https://doi.org/10.1557/jmr.2014.409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.409

Navigation