Skip to main content
Log in

Electrical transport in the ferromagnetic state of silver substituted manganites La1−xAgxMnO3 (x = 0.05 and 0.1)

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present study focuses on a quantitative analysis of electrical resistivity in monovalent-doped manganites La1−xAgxMnO3 (x = 0.05 and 0.1). The electrical resistivity data in the ferromagnetic (FM) metallic phase are analyzed by considering a temperature-independent inelastic scattering of the electrons (due to domain and grain boundaries, defects, etc.) and other temperature-dependent elastic scattering mechanisms (electron–electron, electron–phonon, and electron–magnon). The Debye and Einstein temperatures are deduced from the model Hamiltonian containing potential energy contribution from the long-range Coulomb, van der Waals (vdW) interaction, and short-range repulsive interaction up to the second-neighbor ions. The electron–phonon scattering partially describes the reported FM metallic resistivity behavior with temperature for La1−xAgxMnO3 (x = 0.05 and 0.1). The T2 and T4.5 terms accounting for electron–electron and electron–magnon interactions are essential for the correct description of resistivity. The Mott–Ioffe–Regel criterion for metallic conductivity is valid, and kFl ∼ 1, εFτ ∼ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. M.B. Salamon and M. Jaime: The physics of manganites: Structure and transport. Rev. Mod. Phys. 73, 583 (2001).

    CAS  Google Scholar 

  2. C. Zener: Interaction between the d shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951).

    Article  CAS  Google Scholar 

  3. P.W. Anderson and H. Hasegawa: Considerations on double exchange. Phys. Rev. 100, 675 (1955).

    Article  CAS  Google Scholar 

  4. A.J. Millis, P.B. Littlewood, and B.I. Shraiman: Double exchange alone does not explain the resistivity of La1−xSrxMnO3. Phys. Rev. Lett. 74, 5144 (1995).

    CAS  Google Scholar 

  5. S. Roy, Y.Q. Guo, S. Venkatesh, and N. Ali: Interplay of structure and transport properties of sodium-doped lanthanum manganite. J. Phys.: Condens. Matter 13, 9547 (2001).

    CAS  Google Scholar 

  6. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751 (1976).

    Google Scholar 

  7. M.V. Abrashev, A.P. Litvinchuk, M.N. Iliev, R.L. Meng, V.N. Popov, V.G. Ivanov, R.A. Chakalov, and C. Thomsen: Comparative study of optical phonons in the rhombohedrally distorted perovskites LaAlO3 and LaMnO3. Phys. Rev. B 59, 4146 (1999).

    CAS  Google Scholar 

  8. A.J. Millis, B.I. Shraiman, and R. Mueller: Dynamic Jahn-Teller effect and colossal magnetoresistance in La1−xSrxMnO3. Phys. Rev. Lett. 77, 175 (1996).

    CAS  Google Scholar 

  9. C. Sen, G. Alvarez, and E. Dagotto: Competing ferromagnetic and charge-ordered states in models for manganites: The origin of the colossal magnetoresistance effect. Phys. Rev. Lett. 98, 127202 (2007).

    Google Scholar 

  10. R. Yu, S. Dong, C. Şen, G. Alvarez, and E. Dagotto: Short-range spin and charge correlations and local density of states in the colossal magnetoresistance regime of the single-orbital model for manganites. Phys. Rev. B 77, 214434 (2008).

    Google Scholar 

  11. S.L. Ye, W.H. Song, J.M. Dai, K.Y. Wang, S.G. Wang, C.L. Zhang, J.J. Du, Y.P. Sun, and J. Fang: Effect of Ag substitution on the transport property and magnetoresistance of LaMnO3. J. Magn. Magn. Mater. 248, 26 (2002).

    CAS  Google Scholar 

  12. S. Kumar and P. Majumdar: Singular effect of disorder on electronic transport in strongly coupled electron-phonon systems. Phys. Rev. Lett. 94, 136601 (2005).

    Google Scholar 

  13. S. Kumar and P. Majumdar: Insulator-metal phase diagram of the optimally doped manganites from the disordered Holstein-double exchange model. Phys. Rev. Lett. 96, 016602 (2006).

    Google Scholar 

  14. A.S. Alexandrov, G-m. Zhao, H. Keller, B. Lorenz, Y.S. Wang, and C.W. Chu: Evidence for polaronic Fermi liquid in manganites. Phys. Rev. B 64, 140404 (2001).

    Google Scholar 

  15. G-m. Zhao, V. Smolyaninova, W. Prellier, and H. Keller: Electrical transport in the ferromagnetic state of manganites: Small-polaron metallic conduction at low temperatures. Phys. Rev. Lett. 84, 6086 (2000).

    CAS  Google Scholar 

  16. M. Jaime, P. Lin, M.B. Salamon, and P.D. Han: Low-temperature electrical transport and double exchange in La0.67(Pb, Ca)0.33MnO3. Phys. Rev. B. 58, R5901 (1998).

    CAS  Google Scholar 

  17. K. Kubo and N. Ohata: A quantum theory of double exchange. J. Phys. Soc. Jpn. 33, 21 (1972).

    CAS  Google Scholar 

  18. A.S. Alexandrov and A.M. Bratkovsky: Carrier density collapse and colossal magnetoresistance in doped manganites. Phys. Rev. Lett. 82, 141 (1999).

    CAS  Google Scholar 

  19. D. Varshney and N. Kaurav: Electrical resistivity in the ferromagnetic metallic state of La-Ca-MnO3: Role of electron-phonon interaction. Eur. Phys. J. B 40, 129 (2004).

    CAS  Google Scholar 

  20. D. Varshney and N. Kaurav: Interpretation of temperature-dependent resistivity of La–Pb–MnO3: Role of electron–phonon interaction. J. Low Temp. Phys. 141, 165 (2005).

    CAS  Google Scholar 

  21. D. Varshney, I. Mansuri, and N. Kaurav: Effect of electron/hole doping on the transport properties of lanthanum manganites LaMnO3. J. Phys.: Condens. Matter 19, 24 (2007).

    Google Scholar 

  22. D. Varshney, M.W. Shaikh, and I. Mansuri: Interpretation of temperature-dependent resistivity of La0.7Ba0.3MnO3 manganites. J. Alloys Compd. 486, 726 (2009).

    CAS  Google Scholar 

  23. D. Varshney, D. Choudhary, and M.W. Shaikh: Interpretation of metallic and semiconducting temperature dependent resistivity of La1−xNaxMnO3 (x = 0.07, 0.13) manganites. Comput. Mater. Sci. 47, 839 (2010).

    CAS  Google Scholar 

  24. D. Varshney, D. Choudhary, and M.W. Shaikh: Electrical resistivity behavior of sodium substituted manganites: Electron-phonon, electron-electron and electron-magnon interactions. Eur. Phys. J. B 76, 327 (2010).

    CAS  Google Scholar 

  25. M.N. Iliev, M.V. Abrashev, H-G. Lee, V.N. Popov, Y.Y. Sun, C. Thomsen, R.L. Meng, and C.W. Chu: Raman spectroscopy of orthorhombic perovskite like YMnO3 and LaMnO3. Phys. Rev. B 57, 2872 (1998).

    CAS  Google Scholar 

  26. E. Granado, N.O. Moreno, A. García, J.A. Sanjurjo, C. Rettori, I. Torriani, S.B. Oseroff, J.J. Neumeier, K.J. McClellan, S-W. Cheong, and Y. Tokura: Phonon Raman scattering in R1−xAxMnO3+δ (R = La, Pr; a = Ca, Sr). Phys. Rev. B 58, 11435 (1988).

    Google Scholar 

  27. M.P. Tosi: Cohesion of ionic solids in the Born model. Solid State Phys. 16, 1 (1964).

    CAS  Google Scholar 

  28. D.W. Hafemeister and W.H. Flygare: Outer-shell overlap integral as a function of distance for halogen-halogen, halogen-alkali, and alkali-alkali ions in the alkali halide lattices. J. Chem. Phys. 43, 795 (1965).

    CAS  Google Scholar 

  29. J.C. Slater and J.G. Kirkwood: The van der Waals forces in gases. Phys. Rev. 37, 682 (1931).

    CAS  Google Scholar 

  30. D. Varshney, N. Kaurav, R. Kinge, and R.K. Singh: B1–B2 structural phase transition and elastic properties of UX (X = S, Se, and Te) compounds at high pressure. J. Phys.: Condens. Matter 19, 236204 (2007).

    Google Scholar 

  31. D. Varshney, G. Joshi, M. Varshney, and S. Shriya: Pressure dependent elastic and structural (B 3–B 1) properties of Ga based monopnictides. J. Alloys Compd. 495, 23 (2009).

    Google Scholar 

  32. D. Varshney, V. Rathore, R. Kinge, and R.K. Singh: High-pressure induced structural phase transition in alkaline earth CaX (X = S, Se and Te) semiconductors: NaCl-type (B1) to CsCl-type (B2). J. Alloys Compd. 484, 239 (2009).

    CAS  Google Scholar 

  33. D. Varshney, G. Dagaonkar, and M. Varshney: Pressure and doping dependent elastic and thermodynamical properties of Ga1−xInxP mixed valent compounds. Mater. Res. Bull. 45, 916 (2010).

    CAS  Google Scholar 

  34. D. Varshney, G. Joshi, M. Varshney, and S. Shriya: Pressure induced structural phase transition and elastic properties in BSb, AlSb, GaSb and InSb compounds. Phys. B 405, 1663 (2010).

    CAS  Google Scholar 

  35. D. Varshney, G. Joshi, M. Varshney, and S. Shriya: Pressure induced mechanical properties of boron based pnictides. Solid State Sci. 12, 864 (2010).

    CAS  Google Scholar 

  36. D. Varshney, S. Shriya, and M. Varshney: Study of pressure induced structural phase transition and elastic properties of lanthanum pnictides. Eur. Phys. J. B 85, 241 (2012).

    Google Scholar 

  37. D. Varshney: Mechanical, and elastic properties of europium mono-oxides and mono-chalcogenides (EuX; X = O, S, Se, Te). Europium: Synthesis, Characteristics and Potential Applications, M.S. Attia, ed.; Nova Science Publication, New York, (2013).

    Google Scholar 

  38. D. Varshney and S. Shriya: Elastic, mechanical and thermodynamic properties at high pressures and temperatures of transition metal monocarbides. Int. J. Refract. Met. Hard Mater. 41, 375 (2013).

    CAS  Google Scholar 

  39. A.J. Millis: Cooperative Jahn-Teller effect and electron-phonon coupling in La1−xAxMnO3. Phys. Rev. B 53, 8434 (1996).

    CAS  Google Scholar 

  40. C. Ederer, C. Lin, and A.J. Millis: Structural distortions and model Hamiltonian parameters: From LSDA to a tight-binding description of LaMnO3. Phys. Rev. B 76, 155105 (2007).

    Google Scholar 

  41. D. Varshney: Effect of impurity scatterers on phonon, electron and magnon thermal transport in electron doped cuprate superconductors. Supercond. Sci. Technol. 19, 433 (2006).

    CAS  Google Scholar 

  42. D. Varshney and I. Mansuri: Influence of Ce doping on structural and transport properties of Ca1−xCexMnO3 (x = 0.2) manganite. J. Low Temp. Phys. 162, 52 (2011).

    CAS  Google Scholar 

  43. I. Mansuri, D. Varshney, N. Kaurav, C.L. Lu, and Y.K. Kuo: Effects of A-site disorder on magnetic, electrical and thermal properties of La0.5xLnxCa0.5ySryMnO3 manganites. J. Magn. Magn. Mater. 323, 316 (2011).

    CAS  Google Scholar 

  44. D. Varshney, N. Dodiya, and M.W. Shaikh: Structural properties and electrical resistivity of Na-substituted lanthanum manganites: La1−xNaxMnO3+y (x = 0.1, 0.125 and 0.15). J. Alloys Compd. 509, 7447 (2011).

    CAS  Google Scholar 

  45. D. Varshney and N. Dodiya: Interpretation of metallic and semiconducting temperature dependent resistivity of La0.91Rb0.06Mn0.94O3 manganites. Solid State Sci. 13, 1623 (2011).

    CAS  Google Scholar 

  46. D. Varshney and N. Dodiya: Electrical resistivity of the hole doped La0.8Sr0.2MnO3 manganites: Role of electron–electron/phonon/magnon interactions. Mater. Chem. Phys. 129, 896 (2011).

    CAS  Google Scholar 

  47. I. Mansuri and D. Varshney: Structure and electrical resistivity of La1−xBaxMnO3 (0.25 ≤ x ≤ 0.35) perovskites. J. Alloys Compd. 513, 256 (2012).

    CAS  Google Scholar 

  48. M.W. Shaikh and D. Varshney: Structural properties and electrical resistivity behavior of La1−xKxMnO3 (x = 0.1, 0.125 and 0.15) manganites. Mater. Chem. Phys. 134, 886 (2012).

    CAS  Google Scholar 

  49. N. Marzari and D. Vanderbilt: Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847 (1997).

    CAS  Google Scholar 

  50. I.K. Kamilov, A.G. Gamzatov, A.M. Aliev, A.B. Batdalov, Sh.B. Abdulvagidov, O.V. Mel’nikov, O.Yu. Gorbenko, and A.R. Kaul: Kinetic effects in manganites La1−xAgyMnO3 (y ≤ x). J. Exp. Theor. Phys. 105, 774 (2007).

    CAS  Google Scholar 

  51. L. Ghivelder, I.A. Castillo, N. McN Alford, G.J. Tomka, P.C. Riedi, J. MacManus-Driscoll, A.K.M. Akther Hossain, and L.F. Cohen: Specific heat of La1−xCaxMnO3−δ. J. Magn. Magn. Mater. 189, 274 (199).

    CAS  Google Scholar 

  52. D. Varshney, I. Mansuri, N. Kaurav, W.Q. Lung, and Y.K. Kuo: Influence of Ce doping on electrical and thermal properties of La0.7−xCexCa0.3MnO3 (0.0 ≤ x ≤0.7) manganites. J. Magn. Magn. Mater. 324, 3276 (2012).

    CAS  Google Scholar 

  53. N. Dodiya and D. Varshney: Structural properties and Raman spectroscopy of rhombohedral La1−xNaxMnO3 (0.075≤ x ≤0.15). J. Mol. Struct. 1031, 104 (2013).

    CAS  Google Scholar 

  54. D. Varshney, D. Choudhary, and E. Khan: Electrical transport in the ferromagnetic and paramagnetic state of potassium substituted manganites La1−xKxMnO3 (x = 0.05, 0.1 and 0.15). J. Mater. Sci. 48, 5904 (2013).

    CAS  Google Scholar 

  55. D. Varshney and N. Dodiya: Electrical resistivity of alkali metal doped manganites LaxAyMnwO3 (A = Na, K, Rb): Role of electron-phonon, electron-electron and electron-magnon interactions. Curr. Appl. Phys. 13, 1188 (2013).

    Google Scholar 

  56. D. Varshney, I. Mansuri, M.W. Shaikh, and Y.K. Kuo: Effect of Fe and Co doping on electrical and thermal properties of La0.5Ce0.5Mn1−x(Fe,Co)xO3 manganites. MRS Bulletin 48, 4606.(2013).

    CAS  Google Scholar 

  57. D. Varshney and N. Dodiya: Structural and magnetotransport studies of magnetic ion doping for monovalent-doped LaMnO3 manganites. J. Mater. Res. 29, 1183 (2014).

    CAS  Google Scholar 

  58. M. Quijada, J. Cerne, J.R. Simpson, H.D. Drew, K.H. Ahn, A.J. Millis, R. Shreekala, R. Ramesh, M. Rajeswari, and T. Venkatesan: Optical conductivity of manganites: Crossover from Jahn-Teller small polaron to coherent transport in the ferromagnetic state. Phys. Rev. B 58, 16093 (1998).

    CAS  Google Scholar 

  59. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura: Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3. Phys. Rev. B 51, 14103 (1995).

    CAS  Google Scholar 

  60. M. Egilmez, K.H. Chow, J. Jung, I. Fan, A.I. Mansour, and Z. Salman: Metal-insulator transition, specific heat, and grain-boundary-induced disorder in Sm0.55Sr0.45MnO3. Appl. Phys. Lett. 92, 132505 (2008).

    Google Scholar 

  61. N. Mannella, W.L. Yang, K. Tanaka, X.J. Zhou, H. Zheng, J.F. Mitchell, J. Zaanen, T.P. Devereaux, N. Nagaosa, Z. Hussain, and Z.X. Shen: Polaron coherence condensation as the mechanism for colossal magnetoresistance in layered manganites. Phys. Rev. B 76, 233102 (2007).

    Google Scholar 

  62. N. Mannella, W.L. Yang, X.J. Zhou, H. Zheng, J.F. Mitchell, J. Zaanen, T.P. Devereaux, N. Nagaosa, Z. Hussain, and Z.X. Shen: Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites. Nature 438, 474 (2005).

    CAS  Google Scholar 

  63. P. Graziosi, A. Gambardella, M. Prezioso, A. Riminucci, I. Bergenti, N. Homonnay, G. Schmidt, D. Pullini, and D. Busquets-Mataix: Polaron framework to account for transport properties in metallic epitaxial manganite films. Phys. Rev. B 89, 214411 (2014).

    Google Scholar 

  64. Z. Chen, Y. Xu, Y. Su, S. Cao, and J. Zhang: Resistivity minimum behavior and weak magnetic disorder characteristics in La2/3Ca1/3MnO3 manganites. J. Supercond. Novel Magn. 22, 465 (2009).

    CAS  Google Scholar 

  65. P. Schiffer, A.P. Ramirez, W. Bao, and S-W. Cheong: Low temperature magnetoresistance and the magnetic phase diagram of La1−xCaxMnO3. Phys. Rev. Lett. 75, 3335 (1995).

    Google Scholar 

  66. R. Ang, Y.P. Sun, J. Yang, X.B. Zhu, and W.H. Song: Transport mechanism and magnetothermoelectric power of electron-doped manganites La0.85Te0.15Mn1−xCuxO3 (0 ≤ x ≤ 0.2). J. Appl. Phys. 100, 073706 (2006).

    Google Scholar 

  67. J.M. De Teresa, M.R. Ibarra, J. Blasco, J. García, C. Marquina, and P.A. Algarabel, Z. Arnold and K. Kamenev, C. Ritter, and R. von Helmolt: Spontaneous behavior and magnetic field and pressure effects on La2/3Ca1/3MnO3 perovskite. Phys. Rev. B 54, 1187 (1996).

    Google Scholar 

Download references

ACKNOWLEDGMENT

Financial assistance from MPCST, Bhopal, India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Varshney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varshney, D., Choudhary, D. & Khan, E. Electrical transport in the ferromagnetic state of silver substituted manganites La1−xAgxMnO3 (x = 0.05 and 0.1). Journal of Materials Research 30, 654–665 (2015). https://doi.org/10.1557/jmr.2014.400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.400

Navigation