Skip to main content
Log in

Multiferroic CoFe2O4–BiFeO3 core–shell nanofibers and their nanoscale magnetoelectric coupling

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Multiferroic CoFe2O4–BiFeO3 (CFO–BFO) core–shell nanofibers were synthesized by coaxial electrospinning. The spinel structure of CFO and perovskite structure of BFO were confirmed by x-ray diffraction and high-resolution transmission electron microscopy. The core–shell configuration of nanofibers was verified by scanning electron microscopy and transmission electron microscopy images. The macroscopic ferromagnetic property of core–shell nanofibers was demonstrated by magnetic hysteresis loop. The local magnetoelectric (ME) coupling was confirmed by using dual frequency piezoresponse force microscopy (PFM) under an external magnetic field, showing magnetically induced evolution of piezoresponse and domain structure. The ferroelectric characteristics are demonstrated by the switching spectroscopy PFM. From PFM hysteresis and butterfly loops, it is observed that the piezoresponse amplitude is reduced while coercive voltage increased under external in-plane magnetic field, induced through the mechanical interactions between magnetostrictive CFO and piezoelectric BFO, from which the lateral ME coupling can be estimated quantitatively. The nanofibers thus can find a variety of applications as a one-dimensional multiferroic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. G. Smolenskiĭ and I. Chupis: Ferroelectromagnets. Sov. Phys. Usp. 25, 475 (1982).

    Article  Google Scholar 

  2. P. Dey, T. Nath, M.L. Nanda Goswami, and T. Kundu: Room temperature ferroelectric and ferromagnetic properties of multiferroics xLa0.7Sr0.3MnO3-(1-x)ErMnO3 (weight percent x=0.1, 0.2) composites. Appl. Phys. Lett. 90, 162510 (2007).

    Article  Google Scholar 

  3. C.W. Nan: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082 (1994).

    Article  CAS  Google Scholar 

  4. N.A. Spaldin and M. Fiebig: The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005).

    Article  CAS  Google Scholar 

  5. N.A. Hill: Why are there so few magnetic ferroelectrics?J. Phys. Chem. B 104, 6694 (2000).

    Article  CAS  Google Scholar 

  6. N. Hur, S. Park, P. Sharma, J. Ahn, S. Guha, and S. Cheong: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392 (2004).

    Article  CAS  Google Scholar 

  7. L. Lin, Y. Wan, and F. Li: An analytical nonlinear model for laminate multiferroic composites reproducing the DC magnetic bias dependent magnetoelectric properties. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1568 (2012).

    Article  Google Scholar 

  8. L. Li, J. Li, Y. Shu, and J. Yen: The magnetoelectric domains and cross-field switching in multiferroic BiFeO3. Appl. Phys. Lett. 93, 192506 (2008).

    Article  Google Scholar 

  9. J. Ma, J. Hu, Z. Li, and C.W. Nan: Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 23, 1062 (2011).

    Article  CAS  Google Scholar 

  10. Y. Fetisov and G. Srinivasan: Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Appl. Phys. Lett. 88, 143503 (2006).

    Article  Google Scholar 

  11. R. Ramesh and N.A. Spaldin: Multiferroics: Progress and prospects in thin films. Nat. Mater. 6, 21 (2007).

    Article  CAS  Google Scholar 

  12. C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, and G. Srinivasan: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).

    Article  Google Scholar 

  13. J.P. Zhou, L. Lv, Q. Liu, Y.X. Zhang, and P. Liu: Hydrothermal synthesis and properties of NiFe2O4@BaTiO3 composites with well-matched interface. Sci. Technol. Adv. Mater. 13, 045001 (2012).

    Article  Google Scholar 

  14. J.G. Wan, J.M. Liu, G.H. Wang, and C.W. Nan: Magnetoelectric CoFe2O4-lead zirconate titanate thick films prepared by a polyvinylpyrrolidone-assisted sol-gel method. Appl. Phys. Lett. 88, 182502 (2006).

    Article  Google Scholar 

  15. J.R. Hattrick-Simpers, L. Dai, M. Wuttig, I. Takeuchi, and E. Quandt: Demonstration of magnetoelectric scanning probe microscopy. Rev. Sci. Instrum. 78, 106103 (2007).

    Article  Google Scholar 

  16. C.L. Zhang, W.Q. Chen, S.H. Xie, J.S. Yang, and J.Y. Li: The magnetoelectric effects in multiferroic composite nanofibers. Appl. Phys. Lett. 94, 102907 (2009).

    Article  Google Scholar 

  17. S.H. Xie, F.Y. Ma, Y.M. Liu, and J.Y. Li: Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling. Nanoscale 3, 3152 (2011).

    Article  CAS  Google Scholar 

  18. R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, Q. He, C.H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y.H. Chu, J.F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L.Q. Chen, D.G. Schlom, N.A. Spaldin, L.W. Martin, and R. Ramesh: A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977 (2009).

    Article  CAS  Google Scholar 

  19. Y. Lu, Y. Yin, Z.Y. Li, and Y. Xia: Synthesis and self-assembly of Au@SiO2 core shell colloids. Nano Lett. 2, 785 (2002).

    Article  CAS  Google Scholar 

  20. M. Liu, X. Li, H. Imrane, Y. Chen, T. Goodrich, Z. Cai, K.S. Ziemer, J.Y. Huang, and N.X. Sun: Synthesis of ordered arrays of multiferroic NiFe2O4-Pb(Zi0.52Ti0.48)O3 core-shell nanowires. Appl. Phys. Lett. 90, 152501 (2007).

    Article  Google Scholar 

  21. X.M. Sun, J. Liu, and Y. Li: Oxides@C core-shell nanostructures: One-pot synthesis, rational conversion, and Li storage property. Chem. Mater. 18, 3486 (2006).

    Article  CAS  Google Scholar 

  22. L.J. Lauhon, M.S. Gudiksen, D. Wang, and C.M. Lieber: Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57 (2002).

    Article  CAS  Google Scholar 

  23. Z.M. Huang, Y.Z. Zhang, M. Kotaki, and S. Ramakrishna: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223 (2003).

    Article  CAS  Google Scholar 

  24. Z. Sun, E. Zussman, A.L. Yarin, J.H. Wendorff, and A. Greiner: Compound core–shell polymer nanofibers by co-electrospinning. Adv. Mater. 15, 1929 (2003).

    Article  CAS  Google Scholar 

  25. Y.Z. Zhang, Z.M. Huang, X.J. Xu, C.T. Lim, and S. Ramakrishna: Preparation of core-shell structured PCL-r-gelatin Bi-component nanofibers by coaxial electrospinning. Chem. Mater. 16, 3406 (2004).

    Article  CAS  Google Scholar 

  26. J.Y. Park, S.W. Choi, J.W. Lee, C. Lee, and S.S. Kim: Synthesis and gas sensing properties of TiO2–ZnO core-shell nanofibers. J. Am. Ceram. Soc. 92, 2551 (2009).

    Article  CAS  Google Scholar 

  27. S.H. Xie, Y.Y. Liu, and J.Y. Li: Synthesis, microstructures, and magnetoelectric couplings of electrospun multiferroic nanofibers. Front. Phys. 4, 399 (2012).

    Article  Google Scholar 

  28. Y. Xie, Y. Ou, F.Y. Ma, X.L. Tan, and S.H. Xie: Synthesis of multiferroic Pb(Zr0.52Ti0.48)O3-CoFe2O4 core-shell nanofibers by coaxial electrospinning. Nanosci. Nanotechnol. Lett. 5, 546 (2013).

    Article  CAS  Google Scholar 

  29. Y.H. Hsieh, J.M. Liou, B.C. Huang, C.W. Liang, Q. He, Q. Zhan, Y.P. Chiu, Y.C. Chen, and Y.H. Chu: Local conduction at the BiFeO3-CoFe2O4 tubular oxide interface. Adv. Mater. 24, 4564 (2012).

    Article  CAS  Google Scholar 

  30. X.L. Liu, M.Y. Li, J. Wang, Z.Q. Hu, Y.D. Zhu, and X.Z. Zhao: Preparation and characterization of multiferroic CoFe2O4/Bi0.97Ce0.03FeO3 coaxial nanotubes. Appl. Phys. A 108, 829 (2012).

    Article  CAS  Google Scholar 

  31. S.H. Xie, J.Y. Li, R. Proksch, Y.M. Liu, Y.C. Zhou, Y.Y. Liu, Y. Ou, L.N. Lan, and Y. Qiao: Nanocrystalline multiferroic BiFeO3 ultrafine fibers by sol-gel based electrospinning. Appl. Phys. Lett. 93, 222904 (2008).

    Article  Google Scholar 

  32. Y.W. Ju, J.H. Park, H.R. Jung, S.J. Cho, and W.J. Lee: Fabrication and characterization of cobalt ferrite (CoFe2O4) nanofibers by electrospinning. Mater. Sci. Eng., B 147, 7 (2008).

    Article  CAS  Google Scholar 

  33. B.J. Rodriguez, C. Callahan, S.V. Kalinin, and R. Proksch: Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504 (2007).

    Article  Google Scholar 

  34. S.H. Xie, A. Gannepalli, Q.N. Chen, Y.M. Liu, Y.C. Zhou, R. Proksch, and J.Y. Li: High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity. Nanoscale 4, 408 (2012).

    Article  CAS  Google Scholar 

  35. F.X. Li and R.K.N.D. Rajapakse: A constrained domain-switching model for polycrystalline ferroelectric ceramics. Part II: Combined switching and application to rhombohedral materials. Acta Mater. 55, 6481 (2007).

    Article  CAS  Google Scholar 

  36. S. Jesse, A.P. Baddorf, and S.V. Kalinin: Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 88, 062908 (2006).

    Article  Google Scholar 

  37. L. Lian and N.R. Sottos: Stress effects in sol-gel derived ferroelectric thin films. J. Appl. Phys. 95, 629 (2004).

    Article  CAS  Google Scholar 

  38. J.X. Zhang, J.Y. Dai, C.K. Chow, C.L. Sun, V.C. Lo, and H.L.W. Chan: Magnetoelectric coupling in CoFe2O4/SrRuO3/Pb(Zr0.52Ti0.48)O3 heteroepitaxial thin film structure. Appl. Phys. Lett. 92, 022901 (2008).

    Article  Google Scholar 

  39. L. Yan, Z. Xing, Z. Wang, T. Wang, G. Lei, J. Li, and D. Viehland: Direct measurement of magnetoelectric exchange in self-assembled epitaxial BiFeO3-CoFe2O4 nanocomposite thin films. Appl. Phys. Lett. 94, 192902 (2009).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge the support of Natural Science Foundation of China (Approval Nos. 11372268, 11102175, and 51375017), and Provincial Natural Science Foundation of Hunan (13JJ1019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhong Xie.

Additional information

These authors contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Q., Xie, Y., Zhang, J. et al. Multiferroic CoFe2O4–BiFeO3 core–shell nanofibers and their nanoscale magnetoelectric coupling. Journal of Materials Research 29, 657–664 (2014). https://doi.org/10.1557/jmr.2014.36

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.36

Navigation