Abstract
Multiferroic CoFe2O4–BiFeO3 (CFO–BFO) core–shell nanofibers were synthesized by coaxial electrospinning. The spinel structure of CFO and perovskite structure of BFO were confirmed by x-ray diffraction and high-resolution transmission electron microscopy. The core–shell configuration of nanofibers was verified by scanning electron microscopy and transmission electron microscopy images. The macroscopic ferromagnetic property of core–shell nanofibers was demonstrated by magnetic hysteresis loop. The local magnetoelectric (ME) coupling was confirmed by using dual frequency piezoresponse force microscopy (PFM) under an external magnetic field, showing magnetically induced evolution of piezoresponse and domain structure. The ferroelectric characteristics are demonstrated by the switching spectroscopy PFM. From PFM hysteresis and butterfly loops, it is observed that the piezoresponse amplitude is reduced while coercive voltage increased under external in-plane magnetic field, induced through the mechanical interactions between magnetostrictive CFO and piezoelectric BFO, from which the lateral ME coupling can be estimated quantitatively. The nanofibers thus can find a variety of applications as a one-dimensional multiferroic material.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
G. Smolenskiĭ and I. Chupis: Ferroelectromagnets. Sov. Phys. Usp. 25, 475 (1982).
P. Dey, T. Nath, M.L. Nanda Goswami, and T. Kundu: Room temperature ferroelectric and ferromagnetic properties of multiferroics xLa0.7Sr0.3MnO3-(1-x)ErMnO3 (weight percent x=0.1, 0.2) composites. Appl. Phys. Lett. 90, 162510 (2007).
C.W. Nan: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082 (1994).
N.A. Spaldin and M. Fiebig: The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005).
N.A. Hill: Why are there so few magnetic ferroelectrics?J. Phys. Chem. B 104, 6694 (2000).
N. Hur, S. Park, P. Sharma, J. Ahn, S. Guha, and S. Cheong: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392 (2004).
L. Lin, Y. Wan, and F. Li: An analytical nonlinear model for laminate multiferroic composites reproducing the DC magnetic bias dependent magnetoelectric properties. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1568 (2012).
L. Li, J. Li, Y. Shu, and J. Yen: The magnetoelectric domains and cross-field switching in multiferroic BiFeO3. Appl. Phys. Lett. 93, 192506 (2008).
J. Ma, J. Hu, Z. Li, and C.W. Nan: Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Adv. Mater. 23, 1062 (2011).
Y. Fetisov and G. Srinivasan: Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Appl. Phys. Lett. 88, 143503 (2006).
R. Ramesh and N.A. Spaldin: Multiferroics: Progress and prospects in thin films. Nat. Mater. 6, 21 (2007).
C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, and G. Srinivasan: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).
J.P. Zhou, L. Lv, Q. Liu, Y.X. Zhang, and P. Liu: Hydrothermal synthesis and properties of NiFe2O4@BaTiO3 composites with well-matched interface. Sci. Technol. Adv. Mater. 13, 045001 (2012).
J.G. Wan, J.M. Liu, G.H. Wang, and C.W. Nan: Magnetoelectric CoFe2O4-lead zirconate titanate thick films prepared by a polyvinylpyrrolidone-assisted sol-gel method. Appl. Phys. Lett. 88, 182502 (2006).
J.R. Hattrick-Simpers, L. Dai, M. Wuttig, I. Takeuchi, and E. Quandt: Demonstration of magnetoelectric scanning probe microscopy. Rev. Sci. Instrum. 78, 106103 (2007).
C.L. Zhang, W.Q. Chen, S.H. Xie, J.S. Yang, and J.Y. Li: The magnetoelectric effects in multiferroic composite nanofibers. Appl. Phys. Lett. 94, 102907 (2009).
S.H. Xie, F.Y. Ma, Y.M. Liu, and J.Y. Li: Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling. Nanoscale 3, 3152 (2011).
R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, Q. He, C.H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y.H. Chu, J.F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L.Q. Chen, D.G. Schlom, N.A. Spaldin, L.W. Martin, and R. Ramesh: A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977 (2009).
Y. Lu, Y. Yin, Z.Y. Li, and Y. Xia: Synthesis and self-assembly of Au@SiO2 core shell colloids. Nano Lett. 2, 785 (2002).
M. Liu, X. Li, H. Imrane, Y. Chen, T. Goodrich, Z. Cai, K.S. Ziemer, J.Y. Huang, and N.X. Sun: Synthesis of ordered arrays of multiferroic NiFe2O4-Pb(Zi0.52Ti0.48)O3 core-shell nanowires. Appl. Phys. Lett. 90, 152501 (2007).
X.M. Sun, J. Liu, and Y. Li: Oxides@C core-shell nanostructures: One-pot synthesis, rational conversion, and Li storage property. Chem. Mater. 18, 3486 (2006).
L.J. Lauhon, M.S. Gudiksen, D. Wang, and C.M. Lieber: Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57 (2002).
Z.M. Huang, Y.Z. Zhang, M. Kotaki, and S. Ramakrishna: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223 (2003).
Z. Sun, E. Zussman, A.L. Yarin, J.H. Wendorff, and A. Greiner: Compound core–shell polymer nanofibers by co-electrospinning. Adv. Mater. 15, 1929 (2003).
Y.Z. Zhang, Z.M. Huang, X.J. Xu, C.T. Lim, and S. Ramakrishna: Preparation of core-shell structured PCL-r-gelatin Bi-component nanofibers by coaxial electrospinning. Chem. Mater. 16, 3406 (2004).
J.Y. Park, S.W. Choi, J.W. Lee, C. Lee, and S.S. Kim: Synthesis and gas sensing properties of TiO2–ZnO core-shell nanofibers. J. Am. Ceram. Soc. 92, 2551 (2009).
S.H. Xie, Y.Y. Liu, and J.Y. Li: Synthesis, microstructures, and magnetoelectric couplings of electrospun multiferroic nanofibers. Front. Phys. 4, 399 (2012).
Y. Xie, Y. Ou, F.Y. Ma, X.L. Tan, and S.H. Xie: Synthesis of multiferroic Pb(Zr0.52Ti0.48)O3-CoFe2O4 core-shell nanofibers by coaxial electrospinning. Nanosci. Nanotechnol. Lett. 5, 546 (2013).
Y.H. Hsieh, J.M. Liou, B.C. Huang, C.W. Liang, Q. He, Q. Zhan, Y.P. Chiu, Y.C. Chen, and Y.H. Chu: Local conduction at the BiFeO3-CoFe2O4 tubular oxide interface. Adv. Mater. 24, 4564 (2012).
X.L. Liu, M.Y. Li, J. Wang, Z.Q. Hu, Y.D. Zhu, and X.Z. Zhao: Preparation and characterization of multiferroic CoFe2O4/Bi0.97Ce0.03FeO3 coaxial nanotubes. Appl. Phys. A 108, 829 (2012).
S.H. Xie, J.Y. Li, R. Proksch, Y.M. Liu, Y.C. Zhou, Y.Y. Liu, Y. Ou, L.N. Lan, and Y. Qiao: Nanocrystalline multiferroic BiFeO3 ultrafine fibers by sol-gel based electrospinning. Appl. Phys. Lett. 93, 222904 (2008).
Y.W. Ju, J.H. Park, H.R. Jung, S.J. Cho, and W.J. Lee: Fabrication and characterization of cobalt ferrite (CoFe2O4) nanofibers by electrospinning. Mater. Sci. Eng., B 147, 7 (2008).
B.J. Rodriguez, C. Callahan, S.V. Kalinin, and R. Proksch: Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology 18, 475504 (2007).
S.H. Xie, A. Gannepalli, Q.N. Chen, Y.M. Liu, Y.C. Zhou, R. Proksch, and J.Y. Li: High resolution quantitative piezoresponse force microscopy of BiFeO3 nanofibers with dramatically enhanced sensitivity. Nanoscale 4, 408 (2012).
F.X. Li and R.K.N.D. Rajapakse: A constrained domain-switching model for polycrystalline ferroelectric ceramics. Part II: Combined switching and application to rhombohedral materials. Acta Mater. 55, 6481 (2007).
S. Jesse, A.P. Baddorf, and S.V. Kalinin: Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 88, 062908 (2006).
L. Lian and N.R. Sottos: Stress effects in sol-gel derived ferroelectric thin films. J. Appl. Phys. 95, 629 (2004).
J.X. Zhang, J.Y. Dai, C.K. Chow, C.L. Sun, V.C. Lo, and H.L.W. Chan: Magnetoelectric coupling in CoFe2O4/SrRuO3/Pb(Zr0.52Ti0.48)O3 heteroepitaxial thin film structure. Appl. Phys. Lett. 92, 022901 (2008).
L. Yan, Z. Xing, Z. Wang, T. Wang, G. Lei, J. Li, and D. Viehland: Direct measurement of magnetoelectric exchange in self-assembled epitaxial BiFeO3-CoFe2O4 nanocomposite thin films. Appl. Phys. Lett. 94, 192902 (2009).
ACKNOWLEDGMENTS
We acknowledge the support of Natural Science Foundation of China (Approval Nos. 11372268, 11102175, and 51375017), and Provincial Natural Science Foundation of Hunan (13JJ1019).
Author information
Authors and Affiliations
Corresponding author
Additional information
These authors contributed equally to the work.
Rights and permissions
About this article
Cite this article
Zhu, Q., Xie, Y., Zhang, J. et al. Multiferroic CoFe2O4–BiFeO3 core–shell nanofibers and their nanoscale magnetoelectric coupling. Journal of Materials Research 29, 657–664 (2014). https://doi.org/10.1557/jmr.2014.36
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2014.36