Skip to main content

Advertisement

Log in

Synthesis of high strength aluminum alloys in the Al–Ni–La system

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High strength aluminum (Al) alloys were prepared by rapid solidification method in the Al–Ni–La system. Microstructural characterizations show that all the investigated Al–Ni–La alloys are comprised of Al, rod-like Al3Ni, and blocky Al11La3 phases, of which the size and volume fraction are composition-dependent. The Al85.5Ni9.5La5 (at.%) alloy shows the finest microstructure, which contributes to the highest strength along with considerable plasticity. The experimental analysis and finite element simulation (FES) show that the distribution of the intermetallic phases greatly affects the mechanical properties of the alloys. The rod-like Al3Ni phase precipitated with the locally uniform direction prevents the propagation of cracks and benefits the plastic deformation, whereas the blocky Al11La3 phase exhibits the nature of brittleness and acts as the origin of the microcrack initiation. These findings suggest a new method to design high strength Al alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. A. Inoue and N. Nishiyama: New bulk metallic glasses for applications as magnetic-sensing, chemical, and structural materials. MRS Bull. 32, 651 (2007).

    Article  CAS  Google Scholar 

  2. W. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).

    Article  CAS  Google Scholar 

  3. A. Yavari, J. Lewandowski, and J. Eckert: Mechanical properties of bulk metallic glasses. MRS Bull. 32, 635 (2007).

    Article  CAS  Google Scholar 

  4. J. Kim, A. Inoue, and T. Masumoto: Ultrahigh tensile strengths of Al88Y2Ni9Mn1 or Al88Y2Ni9Fe1 amorphous alloys containing finely dispersed fcc Al particles. Mater. Trans. JIM 31, 747 (1990).

    Article  CAS  Google Scholar 

  5. J. Mu, H. Fu, Z. Zhu, A. Wang, H. Li, Z. Hu, and H. Zhang: Synthesis and properties of Al-Ni-La bulk metallic glass. Adv. Eng. Mater. 11, 530 (2009).

    Article  CAS  Google Scholar 

  6. S. Scudino, K.B. Surreddi, H.V. Nguyen, G. Liu, T. Gemming, M. Sakaliyska, J.S. Kim, J. Vierke, M. Wollgarten, and J. Eckert: High-strength Al87Ni8La5 bulk alloy produced by spark plasma sintering of gas atomized powders. J. Mater. Res. 24, 2909 (2009).

    Article  CAS  Google Scholar 

  7. Y. Kawamura, H. Mano, and A. Inoue: Nanocrystalline aluminum bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorphous powders. Scr. Mater. 44, 1599 (2001).

    Article  CAS  Google Scholar 

  8. K. Ohtera, T. Terabayashi, H. Nagahama, A. Inoue, and T. Masumoto: Mechanical properties of an Al88.5Ni8Mm3.5(Mm: Misch Metal) alloy produced by extrusion of atomized amorphous plus fcc-aluminum phase powders. Mater. Trans. JIM 33, 775 (1992).

    Article  CAS  Google Scholar 

  9. T. Sasaki, K. Hono, J. Vierke, M. Wollgarten, and J. Banhart: Bulk nanocrystalline Al85Ni10La5 alloy fabricated by spark plasma sintering of atomized amorphous powders. Mater. Sci. Eng. A 490, 343 (2008).

    Article  Google Scholar 

  10. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  11. C. Hays, C. Kim, and W. Johnson: Large supercooled liquid region and phase separation in the Zr-Ti-Ni-Cu-Be bulk metallic glasses. Appl. Phys. Lett. 75, 1089 (1999).

    Article  CAS  Google Scholar 

  12. H. Li: Influence of intermediate-range order on glass formation. J. Phys. Chem. B 108, 5438 (2004).

    Google Scholar 

  13. I.T. Penfold and P.S. Salmon: Structure of covalently bonded glass-forming melts: A full partial-structure-factor analysis of liquid GeSe2. Phys. Rev. Lett. 67, 97 (1991).

    Article  CAS  Google Scholar 

  14. P.V. Liddicoat, X.Z. Liao, Y. Zhao, Y. Zhu, M.Y. Murashkin, E.J. Lavernia, R.Z. Valiev, and S.P. Ringer: Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 1, 63 (2010).

    Article  Google Scholar 

  15. S. Zhang, W. Hu, R. Berghammer, and G. Gottstein: Microstructure evolution and deformation behavior of ultrafine-grained Al-Zn-Mg alloys with fine η′ precipitates. Acta. Mater. 58, 6695 (2010).

    Article  CAS  Google Scholar 

  16. Y. Zhao, X. Liao, Z. Jin, R. Valiev, and Y. Zhu: Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater. 52, 4589 (2004).

    Article  CAS  Google Scholar 

  17. K.D. Ralston, N. Birbilis, M. Weyland, and C.R. Hutchinson: The effect of precipitate size on the yield strength-pitting corrosion correlation in Al-Cu-Mg alloys. Acta Mater. 58, 5941 (2010).

    Article  CAS  Google Scholar 

  18. Z.Q. Feng, Y.Q. Yang, B. Huang, X. Luo, M.H. Li, M. Han, and M.S. Fu: Variant selection and the strengthening effect of S precipitates at dislocations in Al-Cu-Mg alloy. Acta Mater. 59, 2412 (2011).

    Article  CAS  Google Scholar 

  19. H. Fu, J. Mu, A. Wang, H. Li, Z. Hu, and H. Zhang: Synthesis and compressive properties of Al–Ni–Y bulk metallic glass. Philos. Mag. Lett. 89, 711 (2009).

    Article  CAS  Google Scholar 

  20. A. Inoue, N. Matsumoto, and T. Masumoto: Al-Ni-Y-Co amorphous alloys with high mechanical strengths, wide supercooled liquid region and large glass-forming capacity. Mater. Trans. JIM 31, 493 (1990).

    Article  CAS  Google Scholar 

  21. K.L. Sahoo, M. Wollgarten, J. Haug, and J. Banhart: Effect of La on the crystallization behaviour of amorphous Al94-xNi6Lax (x=4-7) alloys. Acta Mater. 53, 3861 (2005).

    Article  CAS  Google Scholar 

  22. S.H. Wang and X.F. Bian: Crystallization of Al-Mg-Ce and Al-Mg-Ni-Ce amorphous alloys. J. Alloys Compd. 441, 135 (2007).

    Article  CAS  Google Scholar 

  23. T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker: Binary Alloy Phase Diagram (Am. Soc. Metals, Metals Park, OH, 1986).

    Google Scholar 

  24. J. Mu, H. Fu, Z. Zhu, A. Wang, H. Li, Z. Hu, and H. Zhang: The effect of melt treatment on glass forming ability and thermal stability of Al-based amorphous alloy. Adv. Eng. Mater. 12, 1127 (2010).

    Article  CAS  Google Scholar 

  25. M. Furukawa, Z. Horita, M. Nemoto, R. Valiev, and T. Langdon: Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size. Acta Mater. 44, 4619 (1996).

    Article  CAS  Google Scholar 

  26. G. Hughes, S. Smith, C. Pande, H. Johnson, and R. Armstrong: Hall-Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel. Scr. Metall. 20, 93 (1986).

    Article  CAS  Google Scholar 

  27. X. Qin, X. Wu, and L. Zhang: The microhardness of nanocrystalline silver. Nanostruct. Mater. 5, 101 (1995).

    Article  CAS  Google Scholar 

  28. A. Inoue, T. Zhang, and T. Masumoto: Zr–Al–Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans. JIM 31, 177 (1990).

    Article  CAS  Google Scholar 

  29. M. Ashby and D.R.H. Jones: Engineering Materials, Part 1 and 2 (Pergamon Press, Oxford, 1980).

    Google Scholar 

  30. D.W. Bauer: Fiber reinforced composite product. U.S. Patent No. 3 991 248, Nov 9, 1976.

  31. D. Dew-Hughes and W. Robertson: Dispersed particle hardening of aluminum-copper alloy single crystals. Acta Metall. 8, 147 (1960).

    Article  CAS  Google Scholar 

  32. I. Ibrahim, F. Mohamed, and E. Lavernia: Particulate reinforced metal matrix composites—a review. J. Mater. Sci. 26, 1137 (1991).

    Article  CAS  Google Scholar 

  33. Z.W. Zhu, H.F. Zhang, Z.Q. Hu, W. Zhang, and A. Inoue: Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity. Scr. Mater. 62, 278 (2010).

    Article  CAS  Google Scholar 

  34. N. Hansen: Dispersion strengthening of aluminium-aluminium-oxide products. Acta Metall. 18, 137 (1970).

    Article  CAS  Google Scholar 

  35. D. Shi: First-principles studies of Ni-Al and Ca-x(x=Si, Ge, Sn, Pb, Zn) intermetallic compounds. Ph.D. Thesis, Dalian University of Technology, 2009.

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support from the National Basic Research Program of China (Grant No. 2011CB606301) and the China Postdoctoral Science foundation (Grant No. 2012M520638).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, J., Sha, P., Zhu, Z. et al. Synthesis of high strength aluminum alloys in the Al–Ni–La system. Journal of Materials Research 29, 708–717 (2014). https://doi.org/10.1557/jmr.2014.35

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.35

Navigation