Abstract
High strength aluminum (Al) alloys were prepared by rapid solidification method in the Al–Ni–La system. Microstructural characterizations show that all the investigated Al–Ni–La alloys are comprised of Al, rod-like Al3Ni, and blocky Al11La3 phases, of which the size and volume fraction are composition-dependent. The Al85.5Ni9.5La5 (at.%) alloy shows the finest microstructure, which contributes to the highest strength along with considerable plasticity. The experimental analysis and finite element simulation (FES) show that the distribution of the intermetallic phases greatly affects the mechanical properties of the alloys. The rod-like Al3Ni phase precipitated with the locally uniform direction prevents the propagation of cracks and benefits the plastic deformation, whereas the blocky Al11La3 phase exhibits the nature of brittleness and acts as the origin of the microcrack initiation. These findings suggest a new method to design high strength Al alloys.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
A. Inoue and N. Nishiyama: New bulk metallic glasses for applications as magnetic-sensing, chemical, and structural materials. MRS Bull. 32, 651 (2007).
W. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).
A. Yavari, J. Lewandowski, and J. Eckert: Mechanical properties of bulk metallic glasses. MRS Bull. 32, 635 (2007).
J. Kim, A. Inoue, and T. Masumoto: Ultrahigh tensile strengths of Al88Y2Ni9Mn1 or Al88Y2Ni9Fe1 amorphous alloys containing finely dispersed fcc Al particles. Mater. Trans. JIM 31, 747 (1990).
J. Mu, H. Fu, Z. Zhu, A. Wang, H. Li, Z. Hu, and H. Zhang: Synthesis and properties of Al-Ni-La bulk metallic glass. Adv. Eng. Mater. 11, 530 (2009).
S. Scudino, K.B. Surreddi, H.V. Nguyen, G. Liu, T. Gemming, M. Sakaliyska, J.S. Kim, J. Vierke, M. Wollgarten, and J. Eckert: High-strength Al87Ni8La5 bulk alloy produced by spark plasma sintering of gas atomized powders. J. Mater. Res. 24, 2909 (2009).
Y. Kawamura, H. Mano, and A. Inoue: Nanocrystalline aluminum bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorphous powders. Scr. Mater. 44, 1599 (2001).
K. Ohtera, T. Terabayashi, H. Nagahama, A. Inoue, and T. Masumoto: Mechanical properties of an Al88.5Ni8Mm3.5(Mm: Misch Metal) alloy produced by extrusion of atomized amorphous plus fcc-aluminum phase powders. Mater. Trans. JIM 33, 775 (1992).
T. Sasaki, K. Hono, J. Vierke, M. Wollgarten, and J. Banhart: Bulk nanocrystalline Al85Ni10La5 alloy fabricated by spark plasma sintering of atomized amorphous powders. Mater. Sci. Eng. A 490, 343 (2008).
A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).
C. Hays, C. Kim, and W. Johnson: Large supercooled liquid region and phase separation in the Zr-Ti-Ni-Cu-Be bulk metallic glasses. Appl. Phys. Lett. 75, 1089 (1999).
H. Li: Influence of intermediate-range order on glass formation. J. Phys. Chem. B 108, 5438 (2004).
I.T. Penfold and P.S. Salmon: Structure of covalently bonded glass-forming melts: A full partial-structure-factor analysis of liquid GeSe2. Phys. Rev. Lett. 67, 97 (1991).
P.V. Liddicoat, X.Z. Liao, Y. Zhao, Y. Zhu, M.Y. Murashkin, E.J. Lavernia, R.Z. Valiev, and S.P. Ringer: Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 1, 63 (2010).
S. Zhang, W. Hu, R. Berghammer, and G. Gottstein: Microstructure evolution and deformation behavior of ultrafine-grained Al-Zn-Mg alloys with fine η′ precipitates. Acta. Mater. 58, 6695 (2010).
Y. Zhao, X. Liao, Z. Jin, R. Valiev, and Y. Zhu: Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater. 52, 4589 (2004).
K.D. Ralston, N. Birbilis, M. Weyland, and C.R. Hutchinson: The effect of precipitate size on the yield strength-pitting corrosion correlation in Al-Cu-Mg alloys. Acta Mater. 58, 5941 (2010).
Z.Q. Feng, Y.Q. Yang, B. Huang, X. Luo, M.H. Li, M. Han, and M.S. Fu: Variant selection and the strengthening effect of S precipitates at dislocations in Al-Cu-Mg alloy. Acta Mater. 59, 2412 (2011).
H. Fu, J. Mu, A. Wang, H. Li, Z. Hu, and H. Zhang: Synthesis and compressive properties of Al–Ni–Y bulk metallic glass. Philos. Mag. Lett. 89, 711 (2009).
A. Inoue, N. Matsumoto, and T. Masumoto: Al-Ni-Y-Co amorphous alloys with high mechanical strengths, wide supercooled liquid region and large glass-forming capacity. Mater. Trans. JIM 31, 493 (1990).
K.L. Sahoo, M. Wollgarten, J. Haug, and J. Banhart: Effect of La on the crystallization behaviour of amorphous Al94-xNi6Lax (x=4-7) alloys. Acta Mater. 53, 3861 (2005).
S.H. Wang and X.F. Bian: Crystallization of Al-Mg-Ce and Al-Mg-Ni-Ce amorphous alloys. J. Alloys Compd. 441, 135 (2007).
T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker: Binary Alloy Phase Diagram (Am. Soc. Metals, Metals Park, OH, 1986).
J. Mu, H. Fu, Z. Zhu, A. Wang, H. Li, Z. Hu, and H. Zhang: The effect of melt treatment on glass forming ability and thermal stability of Al-based amorphous alloy. Adv. Eng. Mater. 12, 1127 (2010).
M. Furukawa, Z. Horita, M. Nemoto, R. Valiev, and T. Langdon: Microhardness measurements and the Hall-Petch relationship in an Al-Mg alloy with submicrometer grain size. Acta Mater. 44, 4619 (1996).
G. Hughes, S. Smith, C. Pande, H. Johnson, and R. Armstrong: Hall-Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel. Scr. Metall. 20, 93 (1986).
X. Qin, X. Wu, and L. Zhang: The microhardness of nanocrystalline silver. Nanostruct. Mater. 5, 101 (1995).
A. Inoue, T. Zhang, and T. Masumoto: Zr–Al–Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans. JIM 31, 177 (1990).
M. Ashby and D.R.H. Jones: Engineering Materials, Part 1 and 2 (Pergamon Press, Oxford, 1980).
D.W. Bauer: Fiber reinforced composite product. U.S. Patent No. 3 991 248, Nov 9, 1976.
D. Dew-Hughes and W. Robertson: Dispersed particle hardening of aluminum-copper alloy single crystals. Acta Metall. 8, 147 (1960).
I. Ibrahim, F. Mohamed, and E. Lavernia: Particulate reinforced metal matrix composites—a review. J. Mater. Sci. 26, 1137 (1991).
Z.W. Zhu, H.F. Zhang, Z.Q. Hu, W. Zhang, and A. Inoue: Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity. Scr. Mater. 62, 278 (2010).
N. Hansen: Dispersion strengthening of aluminium-aluminium-oxide products. Acta Metall. 18, 137 (1970).
D. Shi: First-principles studies of Ni-Al and Ca-x(x=Si, Ge, Sn, Pb, Zn) intermetallic compounds. Ph.D. Thesis, Dalian University of Technology, 2009.
ACKNOWLEDGMENTS
The authors gratefully acknowledge the financial support from the National Basic Research Program of China (Grant No. 2011CB606301) and the China Postdoctoral Science foundation (Grant No. 2012M520638).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mu, J., Sha, P., Zhu, Z. et al. Synthesis of high strength aluminum alloys in the Al–Ni–La system. Journal of Materials Research 29, 708–717 (2014). https://doi.org/10.1557/jmr.2014.35
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2014.35