Skip to main content
Log in

\({\rm{\{}}10\bar 12{\rm{\}}}\) twins in the rolled Mg–Zn–Ca alloy with high formability

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hot-rolled Mg–Zn–Ca alloy, followed by annealing, shows high formability at room temperature because of the reduced intensity of the basal texture. [Y. Chino et al., Mater. Trans. 51, 818 (2010).] In the present work, microstructures of the as-rolled Mg–Zn–Ca alloy were investigated using electron backscattered secondary diffraction and transmission electron microscopy. In addition, first-principles calculations were performed to investigate the twinnability of the Mg–Zn–Ca alloy. The microstructural investigations revealed that fine \({\rm{\{}}10\bar 12{\rm{\}}}\) twins and local fine-grained microstructures were formed. It is therefore suggested that the fine twins induce this local fine-grained microstructure, which become the nuclei for recrystallization during annealing. As a result, the intensity of the basal texture is reduced. Calculations revealed that the \({\rm{\{}}10\bar 12{\rm{\}}}\) twinnability is enhanced by the addition of Ca because of the increased unstable stacking fault energy (γus) and decreased unstable twin fault energy (γut).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. M. Hakamada, T. Furuta, Y. Chino, Y. Chen, H. Kusuda, and M. Mabuchi: Life cycle inventory study on magnesium alloy substitution in vehicles. Energy 32, 1352 (2007).

    CAS  Google Scholar 

  2. H. Yoshinaga and R. Horiuchi: Deformation mechanisms in magnesium single crystals compressed in the direction parallel to hexagonal axis. Trans. Jpn. Inst. Met. 4, 1 (1963).

    CAS  Google Scholar 

  3. Y. Chino, M. Mabuchi, R. Kishihara, H. Hosokawa, Y. Yamada, C.E. Wen, K. Shimojima, and H. Iwasaki: Mechanical properties and press formability at room temperature of AZ31 Mg alloy processed by single roller drive rolling. Mater. Trans. 43, 2554 (2002).

    CAS  Google Scholar 

  4. X. Huang, K. Suzuki, and N. Saito: Textures and stretch formability of Mg–6Al–1Zn magnesium alloy sheets rolled at high temperatures up to 793 K. Scr. Mater. 60, 651 (2009).

    CAS  Google Scholar 

  5. X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi: Improvement of stretch formability of Mg–3Al–1Zn alloy sheet by high temperature rolling at finishing pass. J. Alloys Compd. 509, 7579 (2011).

    CAS  Google Scholar 

  6. S.H. Kim, B.S. You, C.D. Yim, and Y.M. Seo: Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheets. Mater. Lett. 59, 3876 (2005).

    CAS  Google Scholar 

  7. H. Watanabe, T. Mukai, and K. Ishikawa: Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy. J. Mater. Process. Technol. 182, 644 (2007).

    CAS  Google Scholar 

  8. Y.Q. Cheng, Z.H. Chen, and W.J. Xia: Drawability of AZ31 magnesium alloy sheet produced by equal channel angular rolling at room temperature. Mater. Charact. 58, 617 (2007).

    CAS  Google Scholar 

  9. X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, and N. Saito: Effects of thickness reduction per pass on microstructure and texture of Mg–3Al–1Zn alloy sheet processed by differential speed rolling. Scr. Mater. 60, 964 (2009).

    CAS  Google Scholar 

  10. H. Li, E. Hsu, J. Szpunar, H. Utsunomiya, and T. Sakai: Deformation mechanism and texture and microstructure evolution during high-speed rolling of AZ31B Mg sheets. J. Mater. Sci. 43, 7148 (2008).

    CAS  Google Scholar 

  11. Y. Chino, K. Sassa, and M. Mabuchi: Tensile properties and stretch formability of Mg-1.5 mass%-0.2 mass%Ce sheet rolled at 723 K. Mater. Trans. 49, 1710 (2008).

    CAS  Google Scholar 

  12. Y. Chino, K. Sassa, and M. Mabuchi: Texture and stretch formability of Mg-1.5 mass%Zn-0.2 mass%Ce alloy rolled at different rolling temperatures. Mater. Trans. 49, 2916 (2008).

    CAS  Google Scholar 

  13. Y. Chino, K. Sassa, and M. Mabuchi: Texture and stretch formability of a rolled Mg–Zn alloy containing dilute content of Y. Mater. Sci. Eng., A 513–514, 394 (2009).

    Google Scholar 

  14. D.H. Kang, D.W. Kim, S. Kim, G.T. Bae, K.H. Kim, and N.J. Kim: Relationship between stretch formability and work-hardening capacity of twin-roll cast Mg alloys at room temperature. Scr. Mater. 61, 768 (2009).

    CAS  Google Scholar 

  15. H. Yan, R.S. Chen, and E.H. Han: Room-temperature ductility and anisotropy of two rolled Mg–Zn–Gd alloys. Mater. Sci. Eng., A 527, 3317 (2010).

    Google Scholar 

  16. Y. Chino, X. Huang, K. Suzuki, and M. Mabuchi: Enhancement of stretch formability at room temperature by addition of Ca in Mg-Zn alloy. Mater. Trans. 51, 818 (2010).

    CAS  Google Scholar 

  17. C.L. Mendis, J.H. Bae, N.J. Kim, and K. Hono: Microstructures and tensile properties of a twin roll cast and heat-treated Mg–2.4Zn–0.1Ag–0.1Ca–0.1Zr alloy. Scr. Mater. 64, 335 (2011).

    CAS  Google Scholar 

  18. Y. Chino, T. Ueda, Y. Otomatsu, K. Sassa, X. Huang, K. Suzuki, and M. Mabuchi: Effects of Ca on tensile properties and stretch formability at room temperature in Mg-Zn and Mg-Al alloys. Mater. Trans. 52, 1477 (2011).

    CAS  Google Scholar 

  19. D.W. Kim, B.C. Suh, M.S. Shim, J.H. Bae, D.H. Kim, and N.J. Kim: Texture evolution in Mg-Zn-Ca alloy sheets. Metall. Mater. Trans. A 44, 2950 (2013).

    CAS  Google Scholar 

  20. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne: First principles methods using CASTEP. Z. Kristallogr. 220, 567 (2005).

    CAS  Google Scholar 

  21. P. Hohenberg and W. Kohn: Inhomogeneous electron gas. Phys. Rev. B 136, B864 (1964).

    Google Scholar 

  22. W. Kohn and L. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, A1133 (1965).

    Google Scholar 

  23. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992).

    CAS  Google Scholar 

  24. D. Vanderbilt: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

    CAS  Google Scholar 

  25. M. Yuasa, M. Hayashi, M. Mabuchi, and Y. Chino: Improved plastic anisotropy of Mg–Zn–Ca alloys exhibiting high-stretch formability: A first-principles study. Acta Mater. 65, 207 (2014).

    CAS  Google Scholar 

  26. V. Vitek: Intrinsic stacking faults in body-centred cubic crystals. Philos. Mag. 18, 773 (1968).

    CAS  Google Scholar 

  27. J. Wang, R.G. Hoagland, J.P. Hirth, L. Capolungo, I.J. Beyerlein, and C.N. Tome: Nucleation of a \((\bar 1012)\) image twin in hexagonal close-packed crystals. Scr. Mater. 61, 903 (2009).

    CAS  Google Scholar 

  28. J. Wang, J.P. Hirth, and C.N. Tome: \((\bar 1012)\) twinning nucleation mechanisms in hexagonal-close-packed crystals. Acta Mater. 57, 5521 (2009).

    CAS  Google Scholar 

  29. M. Yuasa, M. Hayashi, M. Mabuchi, and Y. Chino: Atomic simulations of \((10\bar 12),\;(10\bar 11)\) twinning and \((10\bar 12)\) detwinning in magnesium. J. Phys.: Condens. Matter 26, 015003 (2014).

    Google Scholar 

  30. K. Hantzsche, J. Wendt, K.U. Kainer, J. Bohlen, and D. Letzig: Mg sheet: The effect of process parameters and alloy composition on texture and mechanical properties. JOM 61, 38 (2009).

    CAS  Google Scholar 

  31. M.R. Barnett: Twinning and the ductility of magnesium alloys: Part I: “Tension” twins. Mater. Sci. Eng., A 464, 1 (2007).

    Google Scholar 

  32. M. Yuasa, K. Masunaga, M. Mabuchi, and Y. Chino: Interaction mechanisms of screw dislocations with and twin boundaries in Mg. Philos. Mag. 94, 285 (2014).

    CAS  Google Scholar 

  33. K.N. Braszczynska-Malik, L. Litynska, and W. Baliga: Transmission electron microscopy investigations of AZ91 alloy deformed by equal-channel angular pressing. J. Microscopy 224, 15 (2006).

    CAS  Google Scholar 

  34. M.R. Barnett: Twinning and the ductility of magnesium alloys: Part II. “Contraction” twins. Mater. Sci. Eng., A 464, 8 (2007).

    Google Scholar 

  35. D. Ando, J. Koike, and Y. Sutou: Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys. Acta Mater. 58, 4316 (2010).

    CAS  Google Scholar 

  36. P. Cizek and M.R. Barnett: Characteristics of the contraction twins formed close to the fracture surface in Mg–3Al–1Zn alloy deformed in tension. Scr. Mater. 59, 959 (2008).

    CAS  Google Scholar 

  37. K.H. Kim, B.C. Suh, J.H. Bae, M.S. Shim, S. Kimb, and N.J. Kima: Microstructure and texture evolution of Mg alloys during twin-roll casting and subsequent hot rolling. Scr. Mater. 63, 716 (2010).

    CAS  Google Scholar 

  38. Q. Jin, S.Y. Shim, and S.G. Lim: Correlation of microstructural evolution and formation basal texture in a coarse grained Mg-Al alloys during hot rolling. Scr. Mater. 55, 843 (2006).

    CAS  Google Scholar 

  39. J.C. Tan and M.J. Tan: Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet. Mater. Sci. Eng., A 339, 124 (2003).

    Google Scholar 

  40. R.S. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Current issues in recrystallization: A review. Mater. Sci. Eng., A 238, 219 (1997).

    Google Scholar 

  41. J. Liu, T. Liu, H. Yuan, X. Shi, and Z. Wang: Effect of cold forging and static recrystallization on microstructure and mechanical property of magnesium alloy AZ31. Mater. Trans. 51, 341 (2010).

    CAS  Google Scholar 

  42. X. Huang, K. Suzuki, Y. Chino, and M. Mabuchi: Influence of rolling temperature on static recrystallization behavior of AZ31 magnesium alloy. J. Mater. Sci. 47, 4561 (2011).

    Google Scholar 

  43. J.P. Hirth, R.C. Pond, R.G. Hoagland, X.Y. Liu, and J. Wang: Interface defects, reference spaces and the Frank–Bilby equation. Prog. Mater. Sci. 58, 749 (2013).

    Google Scholar 

  44. J. Wang and I.J. Beyerlein: Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals. Modell. Simul. Mater. Sci. Eng. 20, 024002 (2012).

    Google Scholar 

  45. J.A. Yasi, T. Nogaret, D.R. Trinkle, Y. Qi, L.G. Hector, Jr., and W.A. Curtin: Basal and prism dislocation cores in magnesium: Comparison of first-principles and embedded-atom-potential method predictions. Modell. Simul. Mater. Sci. Eng. 17, 055012 (2009).

    Google Scholar 

  46. J. Han, X.M. Su, Z.H. Jin, and Y.T. Zhu: Basal-plane stacking-fault energies of Mg: A first-principles study of Li- and Al-alloying effects. Scr. Mater. 64, 693 (2011).

    CAS  Google Scholar 

  47. M. Muzyk, Z. Pakiela, and K.J. Kurzydlowski: Generalized stacking fault energy in magnesium alloys: Density functional theory calculations. Scr. Mater. 66, 219 (2012).

    CAS  Google Scholar 

  48. S. Sandlobes, M. Friak, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, and D. Raabe: The relation between ductility and stacking fault energies in Mg and Mg–Y alloys. Acta Mater. 60, 3011 (2012).

    Google Scholar 

  49. E.B. Tadmor and S. Hai: A Peierls criterion for the onset of deformation twinning at a crack tip. J. Mech. Phys. Solids 51, 765 (2003).

    CAS  Google Scholar 

  50. E.B. Tadmor and N. Bernstein: A first-principles measure for the twinnability of FCC metals. J. Mech. Phys. Solids. 52, 2507 (2004).

    CAS  Google Scholar 

  51. J.X. Shang and C.Y. Wang: First-principles investigation of brittle cleavage fracture of Fe grain boundaries. Phys. Rev. B 66, 184105 (2002).

    Google Scholar 

  52. S. Zhang, O.Y. Kontsevoi, A.J. Freeman, and G.B. Olson: First-principles determination of the effect of boron on aluminum grain boundary cohesion. Phys. Rev. B 84, 134104 (2011).

    Google Scholar 

  53. R.O. Kaibyshev and O.S.H. Sitdikov: On the role of twinning in dynamic recrystallization. Phys. Met. Metallogr. 89, 384 (2000).

    Google Scholar 

  54. O. Sitdikov and R. Kaibyshev: Dynamic recrystallization in pure magnesium. Mater. Trans. 42, 1928 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motohiro Yuasa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, H., Yuasa, M., Chino, Y. et al. \({\rm{\{}}10\bar 12{\rm{\}}}\) twins in the rolled Mg–Zn–Ca alloy with high formability. Journal of Materials Research 29, 3024–3031 (2014). https://doi.org/10.1557/jmr.2014.358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.358

Navigation