Skip to main content
Log in

Effects of microstructure and γ′ distribution on the hot deformation behavior for a powder metallurgy superalloy FGH96

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Aiming to clarify the effects of initial states on hot deformation behavior of a powder metallurgy nickel-based superalloy FGH96, specimens in hot isostatic pressed (HIPed) and solution states were isothermally compressed in the temperature range of 1000–1150 °C and the strain rate range of 0.001–1.0 s−1. It revealed that the flow behavior of FGH96 was dependent on the initial states, in which the deformation resistance was higher in the solution state than that in the HIPed state at evaluated temperatures, and the differences became less when the temperature was higher than the γ′ dissolution temperature. The calculated hot activation energy using peak stresses are 590 and 1285 kJ mol−1 for HIPed and solution specimens. Comparison with HIPed specimen, the efficiency of power dissipation (η) in solution specimen is less, and the optimum workability regime moves to higher temperatures. Cracking and in-grain shear bands were observed in the specimens when compressed in flow instability areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. G.B. Viswanathan, P.M. Sarosi, M.F. Henry, D.D. Whitis, W.W. Milligan, and M.J. Mills: Investigation of creep deformation mechanisms at intermediate temperatures in Rene 88 DT. Acta Mater. 53(10), 3041 (2005).

    Article  CAS  Google Scholar 

  2. M-J. Zhang, F-G. Li, S-Y. Wang, and C-Y. Liu: Characterization of hot deformation behavior of a P/M nickel-base superalloy using processing map and activation energy. Mater. Sci. Eng., A 527(24–25), 6771 (2010).

    Google Scholar 

  3. Q-L. Pan, B. Li, Y. Wang, Y-W. Zhang, and Z-M. Yin: Characterization of hot deformation behavior of Ni-base superalloy Rene’41 using processing map. Mater. Sci. Eng., A 585, 371 (2013).

    Article  CAS  Google Scholar 

  4. Y-Q. Ning, Z-K. Yao, Y. Zheng, H-Z. Guo, and M-W. Fu: Flow behavior and hot workability of FGH4096 superalloys with different initial microstructures by using advanced processing maps. Mater. Sci. Eng., A 531, 91 (2012).

    Article  CAS  Google Scholar 

  5. Y-Q. Ning, Z-K. Yao, M-W. Fu, and H-Z. Guo: Recrystallization of the hot isostatic pressed nickel-base superalloy FGH4096: I. Microstructure and mechanism. Mater. Sci. Eng., A 528(28), 8065 (2011).

    Article  CAS  Google Scholar 

  6. Y-Q. Ning, Z-K. Yao, Y-Y. Lei, H-Z. Guo, and M-W. Fu: Hot deformation behavior of the post-cogging FGH4096 superalloy with fine equiaxed microstructure. Mater. Charact. 62(9), 887 (2011).

    Article  CAS  Google Scholar 

  7. K. Wu, G-Q. Liu, B-F. Hu, C-Y. Wang, Y-W. Zhang, Y. Tao, and J-T. Liu: Effect of processing parameters on hot compressive deformation behavior of a new Ni–Cr–Co based P/M superalloy. Mater. Sci. Eng., A 528(13–14), 4620 (2011).

    Article  Google Scholar 

  8. K. Wu, G. Liu, B. Hu, F. Li, Y. Zhang, Y. Tao, and J. Liu: Characterization of hot deformation behavior of a new Ni–Cr–Co based P/M superalloy. Mater. Charact. 61(3), 330 (2010).

    Article  CAS  Google Scholar 

  9. F-W. Kang, G-Q. Zhang, J-F. Sun, Z. Li, and J. Shen: Hot deformation behavior of a spray formed superalloy. J. Mater. Process. Technol. 204(1–3), 147 (2008).

    Article  CAS  Google Scholar 

  10. H-B. Zhang, K-F. Zhang, Z. Lu, C-H. Zhao, and X-L. Yang: Hot deformation behavior and processing map of a γ′-hardened nickel-based superalloy. Mater. Sci. Eng., A 604, 1 (2014).

    Article  CAS  Google Scholar 

  11. D-X. Wen, Y-C. Lin, H-B. Li, X-M. Chen, J. Deng, and L-T. Li: Hot deformation behavior and processing map of a typical Ni-based superalloy. Mater. Sci. Eng., A 591, 183 (2014).

    Article  CAS  Google Scholar 

  12. D-F. Li, Q-M. Guo, S-L. Guo, H-J. Peng, and Z-G. Wu: The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy. Mater. Des. 32(2), 696 (2011).

    Article  CAS  Google Scholar 

  13. C-L. Qiu, M-M. Attallah, X-H. Wu, and P. Andrews: Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder. Mater. Sci. Eng., A 564, 176 (2013).

    Article  CAS  Google Scholar 

  14. Y. Chen, T.J.A. Slater, E. Lewis, E.M. Francis, M.G. Burke, M. Preuss, and S.J. Haigh: Measurement of size-dependent composition variations for gamma prime (γ′) precipitates in an advanced nickel-based superalloy. Ultramicroscopy 144, 1 (2014).

    Article  CAS  Google Scholar 

  15. Y-C. Lin, D-X. Wen, J. Deng, G. Liu, and J. Chen: Constitutive models for high-temperature flow behaviors of a Ni-based superalloy. Mater. Des. 59, 115 (2014).

    Article  CAS  Google Scholar 

  16. Y. Wang, Q-L. Pan, Y-F. Song, C. Li, and Z-F. Li: Hot deformation and processing maps of X-750 nickel-based superalloy. Mater. Des. 51, 154 (2013).

    Article  CAS  Google Scholar 

  17. R. Thamburaj, W. Wallace, Y.N. Chari, and T.L. Prakash: Influence of processing variables on prior particle boundary precipitation and mechanical behaviour in PM superalloy APK1. Powder Metall. 27(3), 169 (1984).

    Article  CAS  Google Scholar 

  18. C. Marquez, G. L’Esperance, and A.K. Koul: Prior particle boundary precipitation in Ni-base superalloys. Int. J. Powder Metall. 25(4), 301 (1989).

    CAS  Google Scholar 

  19. R.G. Menzies, R.H. Bricknell, and A.J. Craven: STEM microanalysis of precipitates and their nuclei in a nickel-base superalloy. Philos. Mag. A 41(4), 493 (1980).

    Article  CAS  Google Scholar 

  20. G-A. Rao, M. Srinivas, and D.S. Sarma: Influence of modified processing on structure and properties of hot isostatically pressed superalloy Inconel 718. Mater. Sci. Eng., A 418(1–2), 282 (2006).

    Article  Google Scholar 

  21. L. Whitmore, M.R. Ahmadi, M. Stockinger, E. Povoden-Karadeniz, E. Kozeschnik, and H. Leitner: Microstructural investigation of thermally aged nickel-based superalloy 718Plus. Mater. Sci. Eng., A 594, 253 (2014).

    Article  CAS  Google Scholar 

  22. C-L. Qiu and P. Andrews: On the formation of irregular-shaped gamma prime and serrated grain boundaries in a nickel-based superalloy during continuous cooling. Mater. Charact. 76, 28 (2013).

    Article  CAS  Google Scholar 

  23. K. Wu, G. Liu, B. Hu, Y. Zhang, Y. Tao, and J. Liu: Effect of solution cooling rate and post treatment on γ′ precipitation and microhardness of a novel nickel-based P/M superalloy FGH98. Rare Met. Mater. Eng. 41(7), 1267 (2012).

    CAS  Google Scholar 

  24. Y-Q. Ning, Y-Z. Kun, M-W. Fu, and H-Z. Guo: Dynamic recrystallization of the hot isostatically pressed P/M superalloy FGH4096 in hot working process. Mater. Sci. Eng., A 527(26), 6968 (2010).

    Article  Google Scholar 

  25. A.R.P. Singh, S. Nag, S. Chattopadhyay, Y. Ren, J. Tiley, G.B. Viswanathan, H.L. Fraser, and R. Banerjee: Mechanisms related to different generations of γ′ precipitation during continuous cooling of a nickel base superalloy. Acta Mater. 61(1), 280 (2013).

    Article  CAS  Google Scholar 

  26. Y. Wang, W-Z. Shao, L. Zhen, and B-Y. Zhang: Hot deformation behavior of delta-processed superalloy 718. Mater. Sci. Eng., A 528(7–8), 3218 (2011).

    Article  Google Scholar 

  27. Y-Q. Ning, M-W. Fu, and X. Chen: Hot deformation behavior of GH4169 superalloy associated with stick phase dissolution during isothermal compression process. Mater. Sci. Eng., A 540, 164 (2012).

    Article  CAS  Google Scholar 

  28. B-F. Hu, H-M. Chen, K-S. Jin, and H-Y. Li: Static recrystallization mechanism of FGH95 superalloy. Trans. Nonferrous Met. Soc. 14(6), 901 (2004).

    CAS  Google Scholar 

  29. C. Zhang, Z. Liu, and G. Wang: Effects of hot rolled shear bands on formability and surface ridging of an ultra purified 21%Cr ferritic stainless steel. J. Mater. Process. Technol. 211(6), 1051 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Fundamental Research Funds for the Central Universities of China and the open fund of the Key Laboratory for Metallurgical Equipment and Control of Ministry of Education in WUHAN University of Science and Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, L., Li, M. et al. Effects of microstructure and γ′ distribution on the hot deformation behavior for a powder metallurgy superalloy FGH96. Journal of Materials Research 29, 2799–2808 (2014). https://doi.org/10.1557/jmr.2014.349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.349

Navigation