Skip to main content
Log in

Temperature and irradiation species dependence of radiation response of nanocrystalline silicon carbide

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The grain size dependence of the radiation response of silicon carbide (SiC) has been studied under 1.0 MeV Kr2+ ion irradiation. It was found that radiation resistance decreased with grain refinement, in contrast to previous studies on the same nanocrystalline (nc) SiC material using Si ion and high voltage electron irradiation. The effect of grain size on radiation response may depend upon the ion species used due to a potential change in amorphization mechanism. It was also determined that temperature had a strong effect on the grain size dependence of the radiation response in SiC due to the activation temperatures of critical recombination and migration reactions. This work explores the possible impacts of irradiation species, temperature, and experimental design on the radiation response of SiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. Y. Katoh, L.L. Snead, I. Szlufarska, and W.J. Weber: Radiation effects in SiC for nuclear structural applications. Curr. Opin. Solid State Mater. Sci. 16(3), 143 (2012).

    Article  CAS  Google Scholar 

  2. L.H. Ford, N.S. Hibbert, and D.G. Martin: Recent developments of coatings for GCFR and HTGCR fuel particles and their performance. J. Nucl. Mater. 45(2), 139 (1972).

    Article  CAS  Google Scholar 

  3. S.J. Zinkle and J.T. Busby: Structural materials for fission & fusion energy. Mater. Today 12(11), 12 (2009).

    Article  CAS  Google Scholar 

  4. R.A. Verrall, M.D. Vlajic, and V.D. Krstic: Silicon carbide as an inert-matrix for a thermal reactor fuel. J. Nucl. Mater. 274(1–2), 54 (1999).

    Article  CAS  Google Scholar 

  5. M. Rose, A.G. Balogh, and H. Hahn: Instability of irradiation induced defects in nanostructured materials. Nucl. Instrum. Methods Phys. Res., Sect. B 127–128, 119 (1997).

    Article  Google Scholar 

  6. N. Nita, R. Schaeublin, and M. Victoria: Impact of irradiation on the microstructure of nanocrystalline materials. J. Nucl. Mater. 329–333, Part B, 953 (2004).

    Article  Google Scholar 

  7. B. Radiguet, A. Etienne, P. Pareige, X. Sauvage, and R. Valiev: Irradiation behavior of nanostructured 316 austenitic stainless steel. J. Mater. Sci. 43(23–24), 7338 (2008).

    Article  CAS  Google Scholar 

  8. A.R. Kilmametov, D.V. Gunderov, R.Z. Valiev, A.G. Balogh, and H. Hahn: Enhanced ion irradiation resistance of bulk nanocrystalline TiNi alloy. Scr. Mater. 59(10), 1027 (2008).

    Article  CAS  Google Scholar 

  9. R.C. Birtcher and L.M. Wang: Microstructural changes induced in Zr3Al and U3Si during irradiation of the crystalline state. Nucl. Instrum. Methods Phys. Res., Sect. B 59–60, Part 2, 966 (1991).

    Article  Google Scholar 

  10. T.D. Shen, S. Feng, M. Tang, J.A. Valdez, Y. Wang, and K.E. Sickafus: Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl. Phys. Lett. 90(26), 263115 (2007).

    Article  Google Scholar 

  11. Y. Zhang, M. Ishimaru, T. Varga, T. Oda, C. Hardiman, H. Xue, Y. Katoh, S. Shannon, and W.J. Weber: Nanoscale engineering of radiation tolerant silicon carbide. Phys. Chem. Chem. Phys. 14, 13429 (2012).

    Article  CAS  Google Scholar 

  12. L. Jamison, M-J. Zheng, S. Shannon, T. Allen, D. Morgan, and I. Szlufarska: Experimental and ab initio study of enhanced resistance to amorphization of nanocrystalline silicon carbide under electron irradiation. J. Nucl. Mater. 445(1–3), 181 (2014).

    Article  CAS  Google Scholar 

  13. W. Jiang, H. Wang, I. Kim, Y. Zhang, and W.J. Weber: Amorphization of nanocrystalline 3C–SiC irradiated with Si+ ions. J. Mater. Res. 25(12), 2341 (2010).

    Article  CAS  Google Scholar 

  14. L. Jamison, P. Xu, K. Sridharan, and T. Allen: Radiation resistance of nanocrystalline silicon carbide. In Advances in Materials Science for Environmental and Nuclear Technology II — Materials Science and Technology 2010 Conference and Exhibition, MS and T’10, Vol. 227, American Ceramic Society, 2011; pp. 161.

    CAS  Google Scholar 

  15. W. Jiang, H. Wang, I. Kim, I.T. Bae, G. Li, P. Nachimuthu, Z. Zhu, Y. Zhang, and W.J. Weber: Response of nanocrystalline 3C silicon carbide to heavy-ion irradiation. Phys. Rev. B 80(16), 161301 (2009).

    Article  Google Scholar 

  16. W. Jiang, L. Jiao, and H. Wang: Transition from irradiation-induced amorphization to crystallization in nanocrystalline silicon carbide. J. Am. Ceram. Soc. 94(12), 4127 (2011).

    Article  CAS  Google Scholar 

  17. C. Jiang, N. Swaminathan, D. Morgan, and I. Szlufarska: Effect of grain boundary stresses on sink strength. Mater. Res. Lett. 2(2), 100 (2014).

    Article  CAS  Google Scholar 

  18. M. Ishimaru, Y. Zhang, S. Shannon, and W.J. Weber: Origin of radiation tolerance in 3C–SiC with nanolayered planar defects. Appl. Phys. Lett. 103, 033104 (2013).

    Article  Google Scholar 

  19. N. Swaminathan, P.J. Kamenski, D. Morgan, and I. Szlufarska: Effects of grain size and grain boundaries on defect production in nanocrystalline 3C–SiC. Acta Mater. 58(8), 2843 (2010).

    Article  CAS  Google Scholar 

  20. D.A. Petti, J. Buongiorno, J.T. Maki, R.R. Hobbins, and G.K. Miller: Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance. Nucl. Eng. Des. 222(2–3), 281 (2003).

    Article  CAS  Google Scholar 

  21. L.L. Snead, T. Nozawa, Y. Katoh, T-S. Byun, S. Kondo, and D.A. Petti: Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371(1–3), 329 (2007).

    Article  CAS  Google Scholar 

  22. H. Inui, H. Mori, and H. Fujita: Electron-irradiation-induced crystalline to amorphous transition in alpha-SiC single crystals. Philos. Mag. B 61(1), 107 (1990).

    Article  CAS  Google Scholar 

  23. H. Inui, H. Mori, A. Suzuki, and H. Fujita: Electron-irradiation-induced crystalline-to-amorphous transition in beta-SiC single crystals. Philos. Mag. B 65(1), 1 (1992).

    Article  CAS  Google Scholar 

  24. W.J. Weber, F. Gao, R. Devanathan, W. Jiang, and C.M. Wang: Ion-beam induced defects and nanoscale amorphous clusters in silicon carbide. Nucl. Instrum. Methods Phys. Res., Sect. B 216, 25 (2004).

    Article  CAS  Google Scholar 

  25. R. Devanathan and W.J. Weber: Displacement energy surface in 3C and 6H SiC. J. Nucl. Mater. 278(2–3), 258 (2000).

    Article  CAS  Google Scholar 

  26. W.J. Weber: Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl. Instrum. Methods Phys. Res., Sect. B 166–167, 98 (2000).

    Article  Google Scholar 

  27. W. Bolse: Formation and development of disordered networks in Si-based ceramics under ion bombardment. Nucl. Instrum. Methods Phys. Res., Sect. B 141(1–4), 133 (1998).

    Article  CAS  Google Scholar 

  28. W.J. Weber, L.M. Wang, and N. Yu: The irradiation-induced crystalline-to-amorphous phase transition in α-SiC. Nucl. Instrum. Methods Phys. Res., Sect. B 116(1–4), 322 (1996).

    Article  CAS  Google Scholar 

  29. X. Wang, L. Jamison, S. Shannon, K. Sridharan, D. Morgan, and I. Szlufarska: (2014, in preparation).

  30. E. Wendler, A. Heft, and W. Wesch: Ion-beam induced damage and annealing behaviour in SiC. Nucl. Instrum. Methods Phys. Res., Sect. B 141(1–4), 105 (1998).

    Article  CAS  Google Scholar 

  31. N. Swaminathan, D. Morgan, and I. Szlufarska: Role of recombination kinetics and grain size in radiation-induced amorphization. Phys. Rev. B 86(21), 214110 (2012).

    Article  Google Scholar 

  32. G.A. Kachurin, M.O. Ruault, A.K. Gutakovsky, O. Kaïtasov, S.G. Yanovskaya, K.S. Zhuravlev, and H. Bernas: Light particle irradiation effects in Si nanocrystals. Nucl. Instrum. Methods Phys. Res., Sect. B 147(1–4), 356 (1999).

    Article  CAS  Google Scholar 

  33. B. Johannessen, P. Kluth, D.J. Llewellyn, G.J. Foran, D.J. Cookson, and M.C. Ridgway: Amorphization of embedded Cu nanocrystals by ion irradiation. Appl. Phys. Lett. 90(7), 073119 (2007).

    Article  Google Scholar 

  34. G.S. Was: Fundamentals of Radiation Materials Science (Springer, Berlin Heidelberg, Germany, 2007).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the U.S. Department of Energy Basic Energy Sciences for funding this research. We thank Prof. D. Morgan from the University of Wisconsin for helpful comments on the study and Dr. Mark Kirk and the rest of the staff at IVEM-Tandem at ANL for their assistance in conducting the in situ irradiations. The electron microscopy analysis was carried out at the Electron Microscopy Center at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabela Szlufarska.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamison, L., Sridharan, K., Shannon, S. et al. Temperature and irradiation species dependence of radiation response of nanocrystalline silicon carbide. Journal of Materials Research 29, 2871–2880 (2014). https://doi.org/10.1557/jmr.2014.340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.340

Navigation