Skip to main content
Log in

Effect of film thickness on the stretchability and fatigue resistance of Cu films on polymer substrates

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The thickness dependence of the electrical stability under monotonic and cyclic tensile loading is investigated for Cu films on polymer substrates. As for monotonic tensile deformation, thicker films show better stability than thinner films due to their higher ductility and the larger capability of strain accommodation. For the fatigue resistance, however, a more complex behavior was observed depending on the amount of the applied strain. For low strain amplitude in the high cycle fatigue (HCF) regime, thinner films exhibit longer fatigue life because the larger strength of thinner films suppresses dislocation movement and damage nucleation. However, for high strain amplitudes in the low cycle fatigue (LCF) regime, the fatigue life for thinner films is drastically reduced compared to thicker films. It is shown that fatigue coefficients in the LCF regime can be obtained when applying the Coffin–Manson relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. S.R. Forrest: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004).

    Article  CAS  Google Scholar 

  2. K.T. Nam, D-W. Kim, P.J. Yoo, C-Y. Chiang, N. Meethong, P.T. Hammond, Y-M. Chiang, and A.M. Belcher: Virus enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885 (2006).

    Article  CAS  Google Scholar 

  3. Y. Li, D.K. Lee, J.Y. Kim, B. Kim, N.G. Park, K. Kim, J.H. Shin, I.S. Choi, and M.J. Ko: Highly durable and flexible dye-sensitized solar cells fabricated on plastic substrates: PVDF-nanofiber-reinforced TiO2 photoelectrodes. Energy Environ. Sci. 5, 8950 (2012).

    Article  CAS  Google Scholar 

  4. K.M. Coakley and M.D. McGehee: Conjugated polymer photovoltaic cells. Chem. Mater. 16, 4533 (2004).

    Article  CAS  Google Scholar 

  5. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai: A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U. S. A. 101, 9966 (2004).

    Article  CAS  Google Scholar 

  6. X.F. Zhu, B. Zhang, J. Gao, and G.P. Zhang: Evaluation of the crack-initiation strain of a Cu–Ni multilayer on a flexible substrate. Scr. Mater. 60, 178 (2009).

    Article  CAS  Google Scholar 

  7. J-H. Lee, N-R. Kim, B-J. Kim, and Y-C. Joo: Improved mechanical performance of solution-processed MWCNT/Ag nanoparticle composite films with oxygen-pressure-controlled annealing. Carbon 50, 98 (2012).

    Article  CAS  Google Scholar 

  8. N. Lu, X. Wang, Z. Suo, and J.J. Vlassak: Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909 (2007).

    Article  Google Scholar 

  9. B.Y. Ahn, E.B. Duoss, M.J. Motala, X. Guo, S.I. Park, Y. Xiong, J. Yoon, R.G. Nuzzo, J.A. Rogers, and J.A. Lewis: Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590 (2009).

    Article  CAS  Google Scholar 

  10. R. Carta, P. Jourand, B. Hermans, J. Thoné, D. Brosteaux, T. Vervust, F. Bossuyt, F. Axisa, J. Vanfleteren, and R. Puers: Design and implementation of advanced systems in a flexible-stretchable technology for biomedical applications. Sens. Actuators, A 156, 79 (2009).

    Article  CAS  Google Scholar 

  11. D.H. Kim, J. Song, M.C. Won, H.S. Kim, R.H. Kim, Z. Liu, Y.Y. Huang, K.C. Hwang, Y.W. Zhang, and J.A. Rogers: Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. U. S. A. 105, 18675 (2008).

    Article  CAS  Google Scholar 

  12. R. Schwaiger, G. Dehm, and O. Kraft: Cyclic deformation of polycrystalline Cu films. Philos. Mag. 83, 693 (2003).

    Article  CAS  Google Scholar 

  13. X.J. Sun, C.C. Wang, J. Zhang, G. Liu, G.J. Zhang, and X.D. Ding: Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates. J. Phys. D: Appl. Phys. 41, 195404 (2008).

    Article  Google Scholar 

  14. G-D. Sim, Y. Hwangbo, H-H. Kim, S-B. Lee, and J.J. Vlassak: Fatigue of polymer-supported Ag thin films. Scr. Mater. 66, 915 (2012).

    Article  CAS  Google Scholar 

  15. P.A. Gruber, J. Böhm, F. Onuseit, A. Wanner, R. Spolenak, and E. Arzt: Size effects on yield strength and strain hardening for ultra-thin Cu films with and without passivation: A study by synchrotron and bulge test techniques. Acta Mater. 56, 2318 (2008).

    Article  CAS  Google Scholar 

  16. W.D. Nix: Mechanical properties of thin films. Metall. Trans. A 20A, 2217 (1989).

    Article  CAS  Google Scholar 

  17. O. Kraft, P.A. Gruber, R. Mönig, and D. Weygand: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).

    Article  CAS  Google Scholar 

  18. R.M. Niu, G. Liu, C. Wang, X.D. Ding, and J. Sun: Thickness dependent critical strain in submicron Cu films adherent to polymer substrate. Appl. Phys. Lett. 90, 161907 (2007).

    Article  Google Scholar 

  19. N. Lu, Z. Suo, and J.J. Vlassak: The effect of film thickness on the failure strain of polymer-supported metal films. Acta Mater. 58, 1679 (2010).

    Article  CAS  Google Scholar 

  20. D. Wang, C.A. Volkert, and O. Kraft: Effect of length scale on fatigue life and damage formation in thin Cu films. Mater. Sci. Eng., A 493, 267 (2008).

    Article  Google Scholar 

  21. R. Schwaiger and O. Kraft: Size effects in the fatigue behavior of thin Ag films. Acta Mater. 51, 195 (2003).

    Article  CAS  Google Scholar 

  22. G-D. Sim, Y-S. Lee, S-B. Lee, and J.J. Vlassak: Effects of stretching and cycling on the fatigue behavior of polymer-supported Ag thin films. Mater. Sci. Eng., A 575, 86 (2013).

    Article  CAS  Google Scholar 

  23. L.F. Coffin: A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME 76, 931 (1954).

    CAS  Google Scholar 

  24. S.S. Manson: Behaviour of materials under conditions of thermal stress. In National Advisory Commission on Aeronautics Report 1170 (Lewis Flight Propulsion Laboratory, Cleveland, 1954).

    Google Scholar 

  25. B-J. Kim, Y. Cho, M-S. Jung, H-A-S. Shin, M-W. Moon, H.N. Han, K.T. Nam, Y-C. Joo, and I-S. Choi: Fatigue-free, electrically reliable copper electrode with nanohole array. Small 8, 3300 (2012).

    Article  CAS  Google Scholar 

  26. B-J. Kim, H-A-S. Shin, S-Y. Jung, Y. Cho, O. Kraft, I-S. Choi, and Y-C. Joo: Crack nucleation during mechanical fatigue in thin metal films on flexible substrates. Acta Mater. 61, 3473 (2013).

    Article  CAS  Google Scholar 

  27. D.Y.W. Yu and F. Spaepen: The yield strength of thin copper films on Kapton. J. Appl. Phys. 94, 2991 (2004).

    Article  Google Scholar 

  28. P.A. Gruber, E. Arzt, and R. Spolenak: Brittle-to-ductile transition in ultra thin Ta/Cu film systems. J. Mater. Res. 24, 1906 (2009).

    Article  CAS  Google Scholar 

  29. G.E. Dieter: Mechanical Metallurgy (McGraw-Hill Book Company, London, UK, 1988).

    Google Scholar 

  30. S. Suresh: Fatigue of Materials, 2nd ed. (Cambridge University Press, Cambridge, UK, 1999).

    Google Scholar 

  31. G.P. Zhang, C.A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, and O. Kraft: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127 (2006).

    Article  CAS  Google Scholar 

  32. R. Dauskardt, M. Lane, Q. Ma, and N. Krishna: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61, 141 (1998).

    Article  Google Scholar 

  33. C.V. Cooper and M.E. Fine: Coffin-Manson relation for fatigue crack initiation. Scr. Metall. 18, 593 (1984).

    Article  CAS  Google Scholar 

  34. M.D. Sangid: The physics of fatigue crack initiation. Int. J. Fatigue 57, 58 (2013).

    Article  CAS  Google Scholar 

  35. C. Laird and A.R. Krause: A theory of crack nucleation in high strain fatigue. Int. J. Fract. Mech. 4, 219 (1968).

    Article  Google Scholar 

  36. D.L. McDowell: Applications of Continuum Damage Mechanics to Fatigue and Fracture (Amer Society for Technology, USA, 1997).

    Book  Google Scholar 

  37. O. Kraft, R. Schwaiger, and P. Wellner: Fatigue in thin films: Lifetime and damage formation. Mater. Sci. Eng., A 319, 919 (2001).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Global Leading Technology Program of the Office of Strategic R&D Planning (OSP) funded by the Korean government (Ministry of Trade, Industry and Energy) (No. 10042537). IS is supported by KIST Research Funding (2E24692). B. J. Kim also acknowledges support of the KIT guest program for his stay at the Institute for Applied Materials. The work was also supported by the Helmholtz Virtual Institute VI-530.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oliver Kraft or Young-Chang Joo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, BJ., Shin, HAS., Lee, JH. et al. Effect of film thickness on the stretchability and fatigue resistance of Cu films on polymer substrates. Journal of Materials Research 29, 2827–2834 (2014). https://doi.org/10.1557/jmr.2014.339

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.339

Navigation