Skip to main content
Log in

Formation of novel photoluminescent hybrid materials by sequential vapor infiltration into polyethylene terephthalate fibers

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Fibrous polyethylene terephthalate (PET) was modified by organometallic vapor exposure to form hybrid materials with unique photoluminescent characteristics. Using a sequential vapor infiltration (SVI) process, the elongated exposures of trimethylaluminum (TMA) to PET were examined. As the infiltration temperature increased, the evidence of changes in the reaction between the organometallic vapor and the polymer was observed as well as significant changes in the infiltration depth into the polymer fiber, owing to the variation in the reaction mechanisms of the hybrid material formation. At TMA exposures of 60 °C, the mass of the polymer fiber increased by ∼55 wt%, whereas exposures at 150 °C were limited to ∼25 wt% infiltration. Photoluminescence analysis of PET after TMA infiltration shows an intensity increase of up to ∼13x and an increase in red shift with increasing infiltration temperature, attributed to the variations in the reaction mechanism to form the hybrid modification observed through the spectroscopy analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. L.M. Bonanno and E. Segal: Nanostructured porous silicon-polymer-based hybrids: From biosensing to drug delivery. Nanomedicine 6(10), 1755 (2011).

    CAS  Google Scholar 

  2. J. Bouclé, P. Ravirajan, and J. Nelson: Hybrid polymer–metal oxide thin films for photovoltaic applications. J. Mater. Chem. 17(30), 3141 (2007).

    Google Scholar 

  3. C. Sanchez, B. Lebeau, F. Chaput, and J.P. Boilot: Optical properties of functional hybrid organic–inorganic nanocomposites. Adv. Mater. 15(23), 1969 (2003).

    CAS  Google Scholar 

  4. H. Floch and P. Belleville: A scratch-resistant single-layer antireflective coating by a low temperature sol-gel route. J. Sol-Gel Sci. Technol. 1(3), 293 (1994).

    CAS  Google Scholar 

  5. A. Wight and M. Davis: Design and preparation of organic-inorganic hybrid catalysts. Chem. Rev. 102(10), 3589 (2002).

    CAS  Google Scholar 

  6. M.H. Lim and A. Stein: Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials. Chem. Mater. 11(11), 3285 (1999).

    CAS  Google Scholar 

  7. P. Judeinstein and C. Sanchez: Hybrid organic-inorganic materials: A land of multidisciplinarity. J. Mater. Chem. 6(4), 511 (1996).

    CAS  Google Scholar 

  8. B. Gong, Q. Peng, and G. Parsons: Conformal organic-inorganic hybrid network polymer thin films by molecular layer deposition using trimethylaluminum and glycidol. J. Phys. Chem. B 115(19), 5930 (2011).

    CAS  Google Scholar 

  9. B. Yoon, J. O’Patchen, D. Seghete, A. Cavanagh, and S. George: Molecular layer deposition of hybrid organic-inorganic polymer films using diethylzinc and ethylene glycol. Chem. Vap. Deposition 15(4–6), 112 (2009).

    CAS  Google Scholar 

  10. A. Dameron, D. Seghete, B. Burton, S. Davidson, A. Cavanagh, J. Bertrand, and S. George: Molecular layer deposition of alucone polymer films using trimethylaluminum and ethylene glycol. Chem. Mater. 20(10), 3315 (2008).

    CAS  Google Scholar 

  11. Y. Li, S. Mannen, J. Schulz, and J. Grunlan: Growth and fire protection behavior of POSS-based multilayer thin films. J. Mater. Chem. 21(9), 3060 (2011).

    CAS  Google Scholar 

  12. Y. Li, J. Schulz, S. Mannen, C. Delhom, B. Condon, S. Chang, M. Zammarano, and J. Grunlan: Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. ACS Nano 4(6), 3325 (2010).

    CAS  Google Scholar 

  13. H.I. Akyildiz, R. Padbury, G.N. Parsons, and J.S. Jur: Temperature and exposure dependence of hybrid organic-inorganic layer formation by sequential vapor infiltration into polymer fibers. Langmuir 28(44), 15697 (2012).

    CAS  Google Scholar 

  14. B. Gong, Q. Peng, J.S. Jur, C.K. Devine, K. Lee, and G.N. Parsons: Sequential vapor infiltration of metal oxides into sacrificial polyester fibers: Shape replication and controlled porosity of microporous/mesoporous oxide monoliths. Chem. Mater. 23(15), 3476 (2011).

    CAS  Google Scholar 

  15. B. Gong, J.C. Spagnola, and G.N. Parsons: Hydrophilic mechanical buffer layers and stable hydrophilic finishes on polydimethylsiloxane using combined sequential vapor infiltration and atomic/molecular layer deposition. J. Vac. Sci. Technol. A 30(1), 01A156–1 (2012).

    Google Scholar 

  16. S-M. Lee, V. Ischenko, E. Pippel, A. Masic, O. Moutanabbir, P. Fratzl, and M. Knez: An alternative route towards metal-polymer hybrid materials prepared by vapor-phase processing. Adv. Funct. Mater. 21(16), 3047 (2011).

    CAS  Google Scholar 

  17. S-M. Lee, E. Pippel, U. Goesele, C. Dresbach, Y. Qin, C.V. Chandran, T. Braeuniger, G. Hause, and M. Knez: Greatly increased toughness of infiltrated spider silk. Science 324(5926), 488 (2009).

    CAS  Google Scholar 

  18. S-M. Lee, E. Pippel, O. Moutanabbir, I. Gunkel, T. Thurn-Albrecht, and M. Knez: Improved mechanical stability of dried collagen membrane after metal infiltration. ACS Appl. Mater. Interfaces 2(8), 2436 (2010).

    CAS  Google Scholar 

  19. Q. Peng, Y-C. Tseng, S.B. Darling, and J.W. Elam: A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates. ACS Nano 5(6), 4600 (2011).

    CAS  Google Scholar 

  20. Y-C. Tseng, Q. Peng, L.E. Ocola, D.A. Czaplewski, J.W. Elam, and S.B. Darling: Etch properties of resists modified by sequential infiltration synthesis. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 29(6), 06FG01 (2011).

    Google Scholar 

  21. Y-C. Tseng, Q. Peng, L.E. Ocola, J.W. Elam, and S.B. Darling: Enhanced block copolymer lithography using sequential infiltration synthesis. J. Phys. Chem. C 115(36), 17725 (2011).

    CAS  Google Scholar 

  22. C.A. Wilson, R.K. Grubbs, and S.M. George: Nucleation and growth during Al2O3 atomic layer deposition on polymers. Chem. Mater. 17(23), 5625 (2005).

    CAS  Google Scholar 

  23. J.S. Jur, J.C. Spagnola, K. Lee, B. Gong, Q. Peng, and G.N. Parsons: Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers. Langmuir 26(11), 8239 (2010).

    CAS  Google Scholar 

  24. Y. Sun, R.P. Padbury, H.I. Akyildiz, M.P. Goertz, J.A. Palmer, and J.S. Jur: Influence of subsurface hybrid material growth on the mechanical properties of atomic layer deposited thin films on polymers. Chem. Vap. Deposition 19(4–6), 134–141 (2013).

    CAS  Google Scholar 

  25. P. Poodt, A. Lankhorst, F. Roozeboom, K. Spee, D. Maas, and A. Vermeer: High-speed spatial atomic-layer deposition of aluminum oxide layers for solar cell passivation. Adv. Mater. 22(32), 3564 (2010).

    CAS  Google Scholar 

  26. Q. Peng, Y-C. Tseng, S.B. Darling, and J.W. Elam: Nanoscopic patterned materials with tunable dimensions via atomic layer deposition on block copolymers. Adv. Mater. 22(45), 5129 (2010).

    CAS  Google Scholar 

  27. D. Mary, M. Albertini, and C. Laurent: Understanding optical emissions from electrically stressed insulating polymers: Electroluminescence in poly (ethylene terephthalate) and poly (ethylene 2, 6-naphthalate) films. J. Phys. D: Appl. Phys. 30(2), 171 (1997).

    CAS  Google Scholar 

  28. G. Teyssedre, D. Mary, and C. Laurent: Analysis of the luminescence decay following excitation of polyethylene naphthalate films by an electric field. J. Phys. D: Appl. Phys. 31(3), 267 (1998).

    CAS  Google Scholar 

  29. Y. Kim, R. Davis, A. Cain, and J. Grunlan: Development of layer-by-layer assembled carbon nanofiber-filled coatings to reduce polyurethane foam flammability. Polymer 52(13), 2847 (2011).

    CAS  Google Scholar 

  30. Y. Takai, T. Mizutani, and M. Ieda: Photoluminescence study in polymers. Jpn. J. Appl. Phys. 17, 651 (1978).

    CAS  Google Scholar 

  31. G. Teyssedre, J. Menegotto, and C. Laurent: Temperature dependence of the photoluminescence in poly (ethylene terephthalate) films. Polymer 42(19), 8207 (2001).

    CAS  Google Scholar 

  32. J.C. Spagnola, B. Gong, S.A. Arvidson, J.S. Jur, S.A. Khan, and G.N. Parsons: Surface and sub-surface reactions during low temperature aluminium oxide atomic layer deposition on fiber-forming polymers. J. Mater. Chem. 20(20), 4213 (2010).

    CAS  Google Scholar 

  33. G.N. Parsons, S.E. Atanasov, E.C. Dandley, C.K. Devine, B. Gong, J.S. Jur, K. Lee, C.J. Oldham, Q. Peng, and J.C. Spagnola: Mechanisms and reactions during atomic layer deposition on polymers. Coord. Chem. Rev. 257(23), 3323 (2013).

    CAS  Google Scholar 

  34. P. Pullumbi, Y. Bouteiller, and L. Manceron: The vibrational spectrum of isolated AlH4−: An infrared matrix isolation and ab initio study. J. Chem. Phys. 101(5), 3610 (1994).

    CAS  Google Scholar 

  35. X. Wang, L. Andrews, S. Tam, M.E. DeRose, and M.E. Fajardo: Infrared spectra of aluminum hydrides in solid hydrogen: Al2H4 and Al2H6. J. Am. Chem. Soc. 125(30), 9218 (2003).

    CAS  Google Scholar 

  36. S-Y. Lin and Y-P. Lee: Infrared absorption of gaseous benzoyl radical C6H5CO recorded with a step-scan Fourier-transform spectrometer. J. Phys. Chem. A 116(24), 6366 (2012).

    CAS  Google Scholar 

  37. M.E. Jacox: The reaction of F atoms with acetaldehyde and ethylene oxide. Vibrational spectra of the CH3 CO and CH2CHO free radicals trapped in solid argon. Chem. Phys. 69(3), 407 (1982).

    CAS  Google Scholar 

  38. S. von Ahsen, H. Willner, and J.S. Francisco: Thermal decomposition of peroxy acetyl nitrate CHC (O) OONO. J. Chem. Phys. 121, 2048 (2004).

    Google Scholar 

  39. P.W. Bruckmann and H. Willner: Infrared spectroscopic study of peroxyacetyl nitrate (PAN) and its decomposition products. Environ. Sci. Technol. 17(6), 352 (1983).

    CAS  Google Scholar 

  40. B. Zhang, J. Zhang, and K. Liu: Imaging the “missing” bands in the resonance-enhanced multiphoton ionization detection of methyl radical. J. Chem. Phys. 122, 104310 (2005).

    Google Scholar 

  41. W.E. Thompson and M.E. Jacox: The infrared spectra of the NH-d cations trapped in solid neon. J. Chem. Phys. 114, 4846 (2001).

    CAS  Google Scholar 

  42. J.E. Johnson: X-ray diffraction studies of the crystallinity in polyethylene terephthalate. J. Appl. Polym. Sci. 2(5), 205 (1959).

    CAS  Google Scholar 

  43. R.d.P. Daubeny and C. Bunn: The crystal structure of polyethylene terephthalate. Proceedings of the royal society of London. Series A. Mathematical and Physical Sciences 226(1167), 531 (1954).

    CAS  Google Scholar 

  44. D.I. Bower: The Vibrational Spectroscopy of Polymers (Cambridge University Press, Cambridge, UK, 1992).

    Google Scholar 

  45. E.F. Archibong and A. St-Amant: Molecular structure of the AlO2 dimer, Al2O4. J. Phy Chem. A 102(34), 6877 (1998).

    CAS  Google Scholar 

  46. S. Kvisle and E. Rytter: Infrared matrix isolation spectroscopy of trimethylgallium, trimethylaluminium and triethylaluminium. Spectrochim. Acta, Part A 40(10), 939 (1984).

    Google Scholar 

  47. R. O’Brien and G. Ozin: A gas-phase Raman study of trimethylaluminium and trimethylboron monomers. J. Chem. Soc. A 1136 (1971).

  48. J-R. Burie, A. Boussac, C. Boullais, G. Berger, T. Mattioli, C. Mioskowski, E. Nabedryk, and J. Breton: FTIR spectroscopy of UV-generated quinone radicals: evidence for an intramolecular hydrogen atom transfer in ubiquinone, naphthoquinone, and plastoquinone. J. Phy Chem. A 99(12), 4059 (1995).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to acknowledge Roberto Garcia from Analytical Instrumental Facility of North Carolina State University for his help for microtome. Authors also acknowledge partial funding from National Science Foundation Industry & University Cooperative Research Program: Center for Dielectrics and Piezoelectrics (CDP) (Grant No. 1361503), Army Competitive In-house Innovative Laboratory Research Grant, and Ministry of National Education of Republic of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse S. Jur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akyildiz, H.I., Lo, M., Dillon, E. et al. Formation of novel photoluminescent hybrid materials by sequential vapor infiltration into polyethylene terephthalate fibers. Journal of Materials Research 29, 2817–2826 (2014). https://doi.org/10.1557/jmr.2014.333

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.333

Navigation