Skip to main content
Log in

Monolithic silsesquioxane materials with well-defined pore structure

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2015

This article has been updated

Abstract

In this article, monolithic porous silsesquioxane materials, which are derived by sol–gel from trialkoxysilanes with substituent groups such as trimethoxysilane (HTMS), methyltrimethoxysilane (MTMS), and vinyltrimethoxysilane (VTMS), are reviewed with a special emphasis on our recent works. Careful controls over fundamental synthetic parameters such as pH, amounts of water and solvent, and kind of solvent and additives play a crucial role in the formation of monolithic gels based on random polysiloxane networks. Crystalline/amorphous precipitation is otherwise observed when the formation of isolated species including polyhedral oligomeric silsesquioxanes dominates or if phase separation of the hydrophobic networks in aqueous media is not adequately controlled. In the successfully controlled system, pore size can be varied from a few tens of nanometers to a few tens of micrometers; porous materials such as transparent aerogels and hierarchically porous monoliths have been explored. In addition, unique properties derived from trialkoxysilanes such as reactivity of the pore surface and flexible mechanical properties are demonstrated. Possibilities in the silsesquioxane materials with controlled pore structures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

Change history

References

  1. C. Sanchez and F. Ribot: Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J. Chem. 18, 53–63 (2006).

    Google Scholar 

  2. C. Sanchez, P. Belleville, M. Popall, and L. Nicole: Applications of advanced hybrid organic-inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev. 40, 696–753 (2011).

    CAS  Google Scholar 

  3. C. Sanchez, C. Boissiere, S. Cassaignon, C. Chaneac, O. Durupthy, M. Faustini, D. Grosso, C. Laberty-Robert, L. Nicole, D. Portehault, F. Ribot, L. Rozes, and C. Sassoye: Molecular engineering of functional inorganic and hybrid materials. Chem. Mater. 26, 221–238 (2014).

    CAS  Google Scholar 

  4. H. Schmidt and H. Wolter: Organically modified ceramics and their applications. J. Non-Cryst. Solids 121, 428–435 (1990).

    CAS  Google Scholar 

  5. B. Novak: Hybrid nanocomposite materials–Between inorganic glasses and organic polymers. Adv. Mater. 5, 422–433 (1993).

    CAS  Google Scholar 

  6. R.J.P. Corriu and D. Leclercq: Recent developments of molecular chemistry of sol-gel processing. Angew. Chem., Int. Ed. Engl. 35, 1420–1436 (1996).

    Google Scholar 

  7. D. Avnir: Organic chemistry within ceramic matrices: Doped sol-gel materials. Acc. Chem. Res. 28, 328–334 (1995).

    CAS  Google Scholar 

  8. T. Ogoshi and Y. Chujo: Organic-inorganic polymer hybrids prepared by the sol-gel method. Compos. Interfaces 11, 539–566 (2005).

    CAS  Google Scholar 

  9. D. Avnir, T. Coradin, O. Lev, and J. Livage: Recent bio-applications of sol-gel materials. J. Mater. Chem. 16, 1013–1030 (2006).

    CAS  Google Scholar 

  10. B. Dunn and J.I. Zink: Molecules in glass: Probes, ordered assemblies, and functional materials. Acc. Chem. Res. 40, 747–755 (2007).

    CAS  Google Scholar 

  11. K. Matsui: Entrapment of organic molecules. In Handbook of Sol-Gel Science and Technology: Processing Characterization and Applications, S. Sakka ed.; Kluwer Academic Publishers: Dordrecht, Vol. I, 2004; pp. 459–484.

    Google Scholar 

  12. P. Colombo, G. Mera, R. Riedel, and G.D. Sorarù: Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93, 1805–1837 (2010).

    CAS  Google Scholar 

  13. C.G. Pantano, A.K. Singh, and H. Zhang: Silicon oxycarbide glasses. J. Sol-Gel Sci. Technol. 14, 7–25 (1999).

    CAS  Google Scholar 

  14. K. Kamiya: Oxynitride glasses and nitrides. In Handbook of Sol-Gel Science and Technology: Processing Characterization and Applications, S. Sakka ed.; Kluwer Academic Publishers: Dordrecht, Vol. I, 2004; pp. 171–183.

    Google Scholar 

  15. K. Kamiya: Oxycarbide glasses and carbides. In Handbook of Sol-gel Science and Technology: Processing Characterization and Applications, S. Sakka, ed.; Kluwer Academic Publishers: Dordrecht, Vol. I, 2004; pp. 185–201.

    Google Scholar 

  16. A.R. Studart, U.T. Gonzenbach, E. Tervoort, and L.J. Gauckler: Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 89, 1771–1789 (2006).

    CAS  Google Scholar 

  17. P. Colombo:Engineering porosity in polymer-derived ceramics. J. Eur. Ceram. Soc. 28, 1389–1395 (2008).

  18. K. Kanamori and K. Nakanishi: Controlled pore formation in organotrialkoxysilanes-derived hybrids: From aerogels to hierarchically porous monoliths. Chem. Soc. Rev. 40, 754–770 (2011).

    CAS  Google Scholar 

  19. R.H. Baney, M. Itoh, A. Sakakibara, and T. Suzuki: Silsesquioxanes. Chem. Rev. 95, 1409–1430 (1995).

    CAS  Google Scholar 

  20. M.A. Brook: Silicon in Organic, Organometallic, and Polymer Chemistry (John Wiley & Sons, New York, 2000).

    Google Scholar 

  21. W. Volksen, R.D. Miller, and G. Dubois: Low dielectric constant materials. Chem. Rev. 110, 56–110 (2010).

    CAS  Google Scholar 

  22. B.A. Kamino and T.P. Bender: The use of siloxanes, silsesquioxanes, and silicones in organic semiconducting materials. Chem. Soc. Rev. 42, 5119–5130 (2013).

    CAS  Google Scholar 

  23. K. Tanaka, F. Ishiguro, and Y. Chujo: POSS ionic liquid. J. Am. Chem. Soc. 132, 17649–17651 (2010).

    CAS  Google Scholar 

  24. K. Tanaka and Y. Chujo: Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J. Mater. Chem. 22, 1733–1746 (2012).

    CAS  Google Scholar 

  25. P.R. Chinnam and S.L. Wunder: Polyoctahedral silsesquioxane-nanoparticle electrolytes for lithium batteries: POSS-lithium salts and POSS-PEGs. Chem. Mater. 23, 5111–5121 (2011).

    CAS  Google Scholar 

  26. Z. Chu and S. Seeger: Superamphiphobic surfaces. Chem. Soc. Rev. 43, 2784–2798 (2014).

    CAS  Google Scholar 

  27. H.L. Castricum, G.G. Paradis, M.C. Mittelmeijer-Hazeleger, R. Kreiter, J.F. Vente, and E. ten Elshof: Tailoring the separation behavior of hybrid organosilica membranes by adjusting the structure of the organic bridging group. Adv. Funct. Mater. 21, 2319–2329 (2011).

    CAS  Google Scholar 

  28. R. Xu, J. Wang, M. Kanezashi, T. Yoshioka, and T. Tsuru: Development of robust organosilica membranes for reverse osmosis. Langmuir 27, 13996–13999 (2011).

    CAS  Google Scholar 

  29. Y.T. Chua, C.X.C. Lin, F. Kleitz, X.S. Zhao, and S. Smart: Nanoporous organosilica membrane for water desalination. Chem. Commun. 49, 4534–4536 (2013).

    CAS  Google Scholar 

  30. S-W. Kuo and F-C. Chang: POSS related polymer nanocomposites. Prog. Polym. Sci. 36, 1649–1696 (2011).

    CAS  Google Scholar 

  31. B. Lebeau and P. Innocenzi: Hybrid materials for optics and photonics. Chem. Soc. Rev. 40, 886–906 (2011).

    CAS  Google Scholar 

  32. S. Fujita and S. Inagaki: Self-organization of organosilica solids with molecular-scale and mesoscale periodicities. Chem. Mater. 20, 891–908 (2008).

    CAS  Google Scholar 

  33. B. Lebeau, F. Gaslain, C. Fernandez-Martin, and F. Babonneau: Organically modified ordered mesoporous siliceous solids. In Ordered Porous Solids: Recent Advances and Prospects, V. Valtchev, S. Mintova, and M. Tsapatsis eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 283–308.

    Google Scholar 

  34. N. Mizoshita, T. Tani, and S. Inagaki: Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors. Chem. Soc. Rev. 40, 789–800 (2011).

    CAS  Google Scholar 

  35. P. Van Der Voort, D. Esquivel, E. De Canck, F. Goethals, I. Van Driessche, and F.J. Romero-Salguero: Periodic mesoporous organosilicas: From simple to complex bridges; a comprehensive overview of functions, morphologies and applications. Chem. Soc. Rev. 42, 3913–3955 (2013).

    Google Scholar 

  36. K. Nakanishi: Pore structure control of silica gels based on phase separation. J. Porous Mater. 4, 67–112 (1997).

    CAS  Google Scholar 

  37. K. Nakanishi and N. Tanaka: Sol-gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc. Chem. Res. 40, 863–873 (2007).

    CAS  Google Scholar 

  38. K. Nakanishi: Synthesis concepts and preparation of silica monoliths. In Monolithic Silicas in Separation Science, K.K. Unger, N. Tanaka, and E. Machtejevas eds.; Wiley-VCH: Weinheim, 2011; pp. 11–33.

    Google Scholar 

  39. G. Hasegawa, K. Kanamori, K. Nakanishi, and T. Hanada: Fabrication of macroporous silicon carbide ceramics by intramolecular carbothermal reduction of phenyl-bridged polysilsesquioxane. J. Mater. Chem. 19, 7716–7720 (2009).

    CAS  Google Scholar 

  40. G. Hasegawa, K. Kanamori, K. Nakanishi, and T. Hanada: Hierarchically porous carbon monoliths with high surface area from bridged polysilsesquioxanes without thermal activation process. Chem. Commun. 46, 8037–8039 (2010).

    CAS  Google Scholar 

  41. G. Hasegawa, K. Kanamori, K. Nakanishi, and T. Hanada: A new route to monolithic macroporous SiC/C composites from biphenylene-bridged polysilsesquioxane gels. Chem. Mater. 22, 2541–2547 (2010).

    CAS  Google Scholar 

  42. K.J. Shea and D.A. Loy: Bridged polysilsesquioxanes. Molecular-engineered hybrid organic-inorganic materials. Chem. Mater. 13, 3306–3319 (2001).

    CAS  Google Scholar 

  43. D.A. Loy, B.M. Baugher, C.R. Baugher, D.A. Schneider, and K. Rahimian: Substituent effects on the sol-gel chemistry of organotrialkoxysilanes. Chem. Mater. 12, 3624–3632 (2000).

    CAS  Google Scholar 

  44. C.J. Brinker and G.W. Scherer: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990), Chapter 3.

    Google Scholar 

  45. S. Che, Z. Liu, T. Osuna, K. Sakamoto, O. Terasaki, and T. Tatsumi: Synthesis and characterization of chiral mesoporous silica. Nature 429, 281–284 (2004).

    CAS  Google Scholar 

  46. A. Shimojima and K. Kuroda: Designed synthesis of nanostructured siloxane–organic hybrids from amphiphilic silicon-based precursors. Chem. Rec. 6, 53–63 (2006).

    CAS  Google Scholar 

  47. C.J. Brinker and G.W. Scherer: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. (Academic Press, San Diego, CA, 1990), Chapter 5.

    Google Scholar 

  48. D.B. Cordes, P.D. Lickiss, and F. Rataboul: Recent development in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem. Rev. 110, 2081–2173 (2010).

    CAS  Google Scholar 

  49. L.V. Ng, P. Thompson, J. Sanchez, C.W. Macosko, and A.V. McCormick: Formation of cagelike intermediates from nonrandom cyclization during acid-catalyzed sol-gel polymerization of tetraethyl orthosilicate. Macromolecules 28, 6471–6476 (1995).

    CAS  Google Scholar 

  50. M.J. Mora-Fonz, C.R.A. Catlow, and D.W. Lewis: Oligomerization and cyclization processes in the nucleation of microporous silicas. Angew. Chem., Int. Ed. 44, 3082–3086 (2005).

    CAS  Google Scholar 

  51. C. Zhang, F. Babonneau, C. Bonhomme, R.M. Laine, C.L. Soles, H.A. Hristov, and A.F. Yee: Highly porous polyhedral silsesquioxane polymers. Synthesis and characterization. J. Am. Chem. Soc. 120, 8380–8391 (1998).

    CAS  Google Scholar 

  52. H. Guo, M.A.B. Meador, L. McCorkle, D.J. Quade, J. Guo, B. Hamilton, M. Cakmak, and G. Sprowl: Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane. ACS Appl. Mater. Interfaces 3, 546–552 (2011).

    CAS  Google Scholar 

  53. H. Lin, J. Ou, Z. Zhang, J. Dong, and H. Zou: Ring-opening polymerization reaction of polyhedral oligomeric silsesquioxanes (POSSs) for preparation of well-controlled 3D skeletal hybrid monoliths. Chem. Commun. 49, 231–233 (2013).

    CAS  Google Scholar 

  54. H. Dong, M. Lee, R.D. Thomas, Z. Zhang, R.F. Reidy, and D.W. Mueller: Methyltrimethoxysilane sol-gel polymerization in acidic ethanol solutions studied by 29Si NMR spectroscopy. J. Sol-Gel Sci. Technol. 28, 5–14 (2003).

    CAS  Google Scholar 

  55. H. Dong, Z. Zhang, M-H. Lee, D.W. Mueller, and R.F. Reidy: Sol-gel polycondensation of methyltrimethoxysilane in ethanol studied by 29Si NMR spectroscopy using a two-step acid/base procedure. J. Sol-Gel Sci. Technol. 41, 11–17 (2007).

    CAS  Google Scholar 

  56. K. Kanamori, Y. Kodera, G. Hayase, K. Nakanishi, and T. Hanada: Transition from transparent aerogels to hierarchically porous monoliths in polymethylsilsesquioxane sol-gel system. J. Colloid Interface Sci. 357, 336–344 (2011).

    CAS  Google Scholar 

  57. O. Riant, N. Mostefaï, and J. Courmarcel: Recent advances in the asymmetric hydrosilylation of ketones, imines and electrophilic double bonds. Synthesis 18, 2943–2958 (2004).

    Google Scholar 

  58. R.H. Morris: Asymmetric hydrogenation, transfer hydrogenation and hydrosilylation of ketones catalyzed by iron complexes. Chem. Soc. Rev. 38, 2282–2291 (2009).

    CAS  Google Scholar 

  59. D. Addis, S. Das, K. Junge, and M. Beller: Selective reduction of carboxylic acid derivatives by catalytic hydrosilylation. Angew. Chem., Int. Ed. 50, 6004–6011 (2011).

    CAS  Google Scholar 

  60. N. Moitra, K. Kanamori, T. Shimada, K. Takeda, Y.H. Ikuhara, X. Gao, and K. Nakanishi: Synthesis of hierarchically porous hydrogen silsesquioxane monoliths and embedding of metal nanoparticles by on-site reduction. Adv. Funct. Mater. 23, 2714–2722 (2013).

    CAS  Google Scholar 

  61. Z. Xie, E.J. Henderson, Ö. Dag, W. Wang, J.E. Lofgreen, C. Kübel, T. Scherer, P.M. Brodersen, Z-Z. Gu, and G.A. Ozin: Periodic mesoporous hydridosilica–Synthesis of an “impossible” material and its thermal transformation into brightly photoluminescent periodic mesoporous nanocrystal silicon-silica composite. J. Am. Chem. Soc. 133, 5094–5102 (2011).

    CAS  Google Scholar 

  62. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    CAS  Google Scholar 

  63. G.D. Sorarù, G. D’Andrea, R. Campostrini, F. Babonneau, and G. Mariotto: Structural characterization and high-temperature behavior of silicon oxycarbide glasses prepared from sol-gel precursors containing Si-H bonds. J. Am. Ceram. Soc. 78, 379–387 (1995).

    Google Scholar 

  64. H-J. Kleebe and Y.D. Blum: SiOC ceramic with high excess free carbon. J. Eur. Ceram. Soc. 28, 1037–1042 (2008).

    CAS  Google Scholar 

  65. C.M. Hessel, E.J. Henderson, and J.G.C. Veinot: Hydrogen silsesquioxane: A molecular precursor for nanocrystalline Si-SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem. Mater. 18, 6139–6146 (2006).

    CAS  Google Scholar 

  66. Ö. Dag, E.J. Henderson, W. Wang, J.E. Lofgreen, S. Petrov, P.M. Brodersen, and G.A. Ozin: Spatially confined redox chemistry in periodic mesoporous hydridosilica-nanosilver grown in reducing nanopores. J. Am. Chem. Soc. 133, 17454–17462 (2011).

    CAS  Google Scholar 

  67. N. Moitra, K. Kanamori, Y.H. Ikuhara, X. Gao, Z. Yang, G. Hasegawa, K. Takeda, T. Shimada, and K. Nakanishi: Reduction on reactive pore surface as a versatile approach to monolith-supported metal alloy nanoparticles and its catalytic applications. J. Mater. Chem. A 2, 12535–12544 (2014).

    CAS  Google Scholar 

  68. N. Moitra, A. Matsushima, T. Kamei, K. Kanamori, Y.H. Ikuhara, X. Gao, K. Takeda, Y. Zhu, K. Nakanishi, and T. Shimada: A new hierarchically porous Pd@HSQ monolithic catalyst for Mizoroki-Heck cross-coupling reaction. New J. Chem. 38, 1144–1149 (2014).

    CAS  Google Scholar 

  69. N. Moitra, T. Kamei, K. Kanamori, K. Nakanishi, K. Takeda, and T. Shimada: Recyclable functionalization of silica with alcohols via dehydrogenative addition on hydrogen silsesquioxane. Langmuir 29, 12243–12253 (2013).

    CAS  Google Scholar 

  70. T. Shimada, K. Aoki, Y. Shinoda, T. Nakamura, N. Tokunaga, S. Inagaki, and T. Hayashi: Functionalization on silica gel with allylsilanes. A new method of covalent attachment of organic functional groups on silica gel. J. Am. Chem. Soc. 125, 4688–4689 (2003).

    CAS  Google Scholar 

  71. J-W. Park and C-H. Jun: Transition-metal-catalyzed immobilization of organic functional groups onto solid supports through vinylsilane coupling reactions. J. Am. Chem. Soc. 132, 7268–7269 (2010).

    CAS  Google Scholar 

  72. H. Dong, M.A. Brook, and J.D. Brennan: A new route to monolithic methylsilsesquioxanes: Gelation behavior of methyltrimethoxysilane and morphology of resulting methylsilsesquioxanes under one-step and two-step processing. Chem. Mater. 17, 2807–2816 (2005).

    CAS  Google Scholar 

  73. K. Kanamori, H. Yonezawa, K. Nakanishi, K. Hirao, and H. Jinnai: Structural formation of hybrid siloxane-based polymer monolith in confined spaces. J. Sep. Sci. 27, 874–886 (2004).

    CAS  Google Scholar 

  74. K. Nakanishi and K. Kanamori: Organic-inorganic hybrid poly(silsesquioxane) monoliths with controlled macro- and mesopores. J. Mater. Chem. 15, 3776–3786 (2005).

    CAS  Google Scholar 

  75. K. Kanamori, K. Nakanishi, and T. Hanada: Thick silica gel coatings on methylsilsesquioxane monoliths using anisotropic phase separation. J. Sep. Sci. 29, 2463–2470 (2006).

    CAS  Google Scholar 

  76. K. Kanamori, M. Aizawa, K. Nakanishi, and T. Hanada: New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv. Mater. 19, 1589–1593 (2007).

    CAS  Google Scholar 

  77. K. Kanamori, M. Aizawa, K. Nakanishi, and T. Hanada: Elastic organic-inorganic hybrid aerogels and xerogels. J. Sol-Gel Sci. Technol. 48, 172–181 (2008).

    CAS  Google Scholar 

  78. K. Kanamori, K. Nakanishi, and T. Hanada: J. Ceram. Soc. Jpn. 117, 1333–1338 (2009).

    CAS  Google Scholar 

  79. G. Hayase, K. Kanamori, and K. Nakanishi: Structure and properties of polymethylsilsesquioxane aerogels synthesized with surfactant n -hexadecyltrimethylammonium chloride. Microporous Mesoporous Mater. 158, 247–252 (2012).

    CAS  Google Scholar 

  80. M. Kurahashi, K. Kanamori, K. Takeda, H. Kaji, and K. Nakanishi: Role of block copolymer surfactant on the pore formation in methylsilsesquioxane aerogel systems. RSC Adv. 2, 7166–7173 (2012).

    CAS  Google Scholar 

  81. N. Hüsing and U. Schubert: Aerogels-airy materials: Chemistry, structure, and properties. Angew. Chem., Int. Ed. 37, 22–45 (1998).

    Google Scholar 

  82. A.C. Pierre and G.M. Pajonk: Chemistry of aerogels and their applications. Chem. Rev. 102, 4243–4265 (2002).

    CAS  Google Scholar 

  83. M. Koebel, A. Rigacci, and P. Achard: Aerogel-based thermal superinsulation: An overview. J. Sol-Gel Sci. Technol. 63, 315–339 (2012).

    CAS  Google Scholar 

  84. H. Itoh, T. Tabata, M. Kokitsu, N. Okazaki, Y. Imizu, and A. Tada: Preparation of SiO2-Al2O3 gels from tetraethoxysilane and aluminum chloride. J. Ceram. Soc. Jpn. 101, 1081–1083 (1993).

    CAS  Google Scholar 

  85. A.E. Gash, T.M. Tillotson, J.H. Satcher, Jr., J.F. Poco, L.W. Hrubesh, and R.L. Simpson: Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem. Mater. 13, 999–1007 (2001).

    CAS  Google Scholar 

  86. X. Guo, W. Li, H. Yang, K. Kanamori, Y. Zhu, and K. Nakanishi: Gelation behavior and phase separation of macroporous methylsilsesquioxane monoliths prepared by in situ two-step processing. J. Sol-Gel Sci. Technol. 67, 406–413 (2013).

    CAS  Google Scholar 

  87. X. Guo, H. Yu, H. Yang, K. Kanamori, Y. Zhu, and K. Nakanishi: Pore structure control of macroporous methylsilsesquioxane monoliths prepared by in situ two-step processing. J. Porous Mater. 20, 1477–1483 (2013).

    CAS  Google Scholar 

  88. J. Cai, S. Liu, J. Feng, S. Kimura, M. Wada, S. Kuga, and L. Zhang: Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew. Chem., Int. Ed. 51, 2076–2079 (2012).

    CAS  Google Scholar 

  89. M.A. Worsley, S.O. Kucheyev, J.D. Kuntz, T.Y. Olson, T.Y.-J. Han, A.V. Hamza, J.H. Satcher, Jr., and T.F. Baumann: Carbon scaffolds for stiff and highly conductive monolithic oxide-carbon nanotube composites. Chem. Mater. 23, 3054–3061 (2011).

    CAS  Google Scholar 

  90. D.J. Boday, B. Muriithi, R.J. Stover, and D.A. Loy: Polyaniline nanofiber-silica composite aerogels. J. Non-Cryst. Solids 358, 1575–1580 (2012).

    CAS  Google Scholar 

  91. G. Hayase, K. Kanamori, K. Abe, H. Yano, A. Maeno, H. Kaji, and K. Nakanishi: Polymethylsilsesquioxane-cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability and superhydrophobicity. ACS Appl. Mater. Interfaces (published online. DOI: https://doi.org/10.1021/am501822y).

  92. G. Hayase, K. Kanamori, and K. Nakanishi: New flexible aerogels and xerogels derived from methyltrimethoxysilane/dimethyldimethoxysilane co-precursors. J. Mater. Chem. 21, 17077–17079 (2011).

    CAS  Google Scholar 

  93. G. Hayase, K. Kanamori, G. Hasegawa, A. Maeno, H. Kaji, and K. Nakanishi: A superamphiphobic macroporous silicone monolith with marshmallow-like flexibility. Angew. Chem., Int. Ed. 52, 1986–1989 (2013).

    CAS  Google Scholar 

  94. G. Hayase, K. Kanamori, M. Fukuchi, H. Kaji, and K. Nakanishi: Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew. Chem., Int. Ed. 52, 1986–1989 (2013).

    CAS  Google Scholar 

  95. J. Wen and G.L. Wilkes: Organic/inorganic hybrid network materials by the sol-gel approach. Chem. Mater. 8, 1667–1681 (1996).

    CAS  Google Scholar 

  96. B.M. Novak, D. Auerbach, and C. Verrier: Low-density, mutually interpenetrating organic-inorganic composite materials via supercritical drying techniques. Chem. Mater. 4, 282–286 (1994).

    Google Scholar 

  97. S.J. Kramer, F. Rubio-Alonso, and J.D. Mackenzie: Organically modified silicate aerogels, “aeromosils”. Mater. Res. Soc. Symp. Proc. 435, 295–300 (1996).

    CAS  Google Scholar 

  98. J.D. Mackenzie and E.P. Bescher: Mechanical properties of organic-inorganic hybrids. In Handbook of Sol-Gel Science and Technology: Processing Characterization and Applications, S. Sakka ed.; Kluwer Academic Publishers: Dordrecht, 2004, Vol. II; pp. 313–326.

    Google Scholar 

  99. H. Frenkel-Mullerad and D. Avnir: The chemical reactivity of sol-gel materials: Hydrobromination of ormosils. Chem. Mater. 12, 3754–3759 (2000).

    CAS  Google Scholar 

  100. A. Itagaki, K. Nakanishi, and K. Hirao: Phase separation in sol-gel system containing mixture of 3- and 4-functional alkoxysilanes. J. Sol-Gel Sci. Technol. 26, 153–156 (2003).

    CAS  Google Scholar 

  101. A. Shimojima and K. Kuroda: Designed synthesis of nanostructured siloxane-organic hybrids from amphiphilic silicon-based precursors. Chem. Rec. 6, 53–63 (2006).

    CAS  Google Scholar 

  102. K. Kuroda, A. Shimojima, K. Kawahara, R. Wakabayashi, Y. Tamura, Y. Asakura, and M. Kitahara: Utilization of alkoxysilyl groups for the creation of structurally controlled siloxane-based nanomaterials. Chem. Mater. 26, 211–220 (2014).

    CAS  Google Scholar 

  103. J.N. Hay, D. Porter, and H.M. Raval: A versatile route to organically-modified silicas and porous silicas via the non-hydrolytic sol-gel process. J. Mater. Chem. 10, 1811–1818 (2000).

    CAS  Google Scholar 

  104. P.H. Mutin and A. Vioux: Nonhydrolytic processing of oxide-based materials: Simple routes to control homogeneity, morphology, and nanostructure. Chem. Mater. 21, 582–596 (2009).

    CAS  Google Scholar 

  105. Y. Liu, M. Wang, Z. Li, H. Liu, P. He, and J. Li: Preparation of porous aminopropylsilsesquioxane by a nonhydrolytic sol-gel method in ionic liquid solvent. Langmuir 21, 1618–1622 (2005).

    CAS  Google Scholar 

  106. A. Arkhireeva, J.N. Hay, and M. Manzano: Preparation of silsesquioxane particles via a nonhydrolytic sol-gel route. Chem. Mater. 17, 875–880 (2005).

    CAS  Google Scholar 

  107. A. González-Campo, E.J. Juárez-Pérez, C. Viñas, B. Boury, R. Sillanpää, R. Kivekäs, and R. Núñez: Carboranyl substituted siloxanes and octasilsesquioxanes: Synthesis, characterization, and reactivity. Macromolecules 41, 8458–8466 (2008).

    Google Scholar 

  108. D.J. Boday, S. Tolbert, M.W. Keller, Z. Li, J.T. Wertz, B. Muriithi, and D.A. Loy: Non-hydrolytic formation of silica and polysilsesquioxane particles from alkoxysilane monomers with formic acid in toluene/tetrahydrofuran solutions. J. Nanopart. Res. 16, 2313 (2014).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful for all co-workers who have contributed to the works reviewed in the present article (most of the names appear in the reference list). Financial supports such as Grants-in-Aid for Scientific Research (administrated by Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology, Japan) and Advanced Low Carbon Technology Research and Development Program (ALCA, by Japan Science and Technology Agency) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Kanamori.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanamori, K. Monolithic silsesquioxane materials with well-defined pore structure. Journal of Materials Research 29, 2773–2786 (2014). https://doi.org/10.1557/jmr.2014.332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.332

Navigation