Skip to main content
Log in

Synthesis of nanoparticles, nanorods, and mesoporous SnO2 as anode materials for lithium-ion batteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mesoporous and nanorods SnO2 are synthesized by controlling the state of SnCl2·2H2O precursor with SBA-15 as hard template, and the possible formation mechanisms at different assembling modes inside the ordered mesoporous silica templates are proposed. In addition, SnO2 nanoparticles are synthesized by hydrolysis depositing method. The electrochemical tests of as-prepared samples indicate that the reticular stacking structure of the nanorods would limit the Li+ ions to intercalate, but the effect of volume expansion in this case upon cycling is insignificant. The mesostructure SnO2 tends to be stable after partial structural collapse at first few cycles. And the Li+ ions can readily intercalate and de-intercalate into/from its ordered channels structure, which provides a high capacity and an improved cycle property. Although SnO2 nanoparticles deliver high capacity at an early stage, the agglomeration may induce the capacity to drop rapidly after a certain number of cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. X. Ji, K.T. Lee, and L.F. Nazar: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500 (2009).

    Article  CAS  Google Scholar 

  2. J-M. Tarascon and M. Armand: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).

    Article  CAS  Google Scholar 

  3. H.J. Wang, J.M. Wang, W.B. Fang, H. Wan, L. Liu, H.Q. Lian, H.B. Shao, W.X. Chen, J.Q. Zhang, and C.N. Cao: Structural and electrochemical properties of a porous nanostructured SnO2 film electrode for lithium-ion batteries. Electrochem. Commun. 12, 194 (2010).

    Article  CAS  Google Scholar 

  4. B. Zhao, G. Zhang, J. Song, Y. Jiang, H. Zhuang, P. Liu, and T. Fang: Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity. Electrochim. Acta 56, 7340 (2011).

    Article  CAS  Google Scholar 

  5. Z.F. Du, X.M. Yin, M. Zhang, Q.Y. Hao, Y.G. Wang, and T.H. Wang: Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. Mater. Lett. 64, 2076 (2010).

    Article  CAS  Google Scholar 

  6. X. Li, A. Dhanabalan, L. Gu, and C. Wang: Three-dimensional porous core-shell Sn@carbon composite anodes for high-performance lithium-ion battery applications. Adv. Energy Mater. 2, 238 (2012).

    Article  Google Scholar 

  7. J. Zhu, Z. Lu, M.O. Oo, H.H. Hng, J. Ma, H. Zhang, and Q. Yan: Synergetic approach to achieve enhanced lithium ion storage performance in ternary phased SnO2-Fe2O3/rGO composite nanostructures. J. Mater. Chem. 21, 12770 (2011).

    Article  CAS  Google Scholar 

  8. V. Juttukonda, R.L. Paddock, J.E. Raymond, D. Denomme, A.E. Richardson, L.E. Slusher, and B.D. Fahlman: Facile synthesis of tin oxide nanoparticles stabilized by dendritic polymers. J. Am. Chem. Soc. 128, 420 (2006).

    Article  CAS  Google Scholar 

  9. J. Liu, Y. Li, X. Huang, R. Ding, Y. Hu, J. Jiang, and L. Liao: Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J. Mater. Chem. 19, 1859 (2009).

    Article  CAS  Google Scholar 

  10. J. Duan, S. Yang, H. Liu, J. Gong, H. Huang, X. Zhao, R. Zhang, and Y. Du: Single crystal SnO2 zigzag nanobelts. J. Am. Chem. Soc. 127, 127 (2005).

    Google Scholar 

  11. J. Ye, H. Zhang, R. Yang, X. Li, and L. Qi: Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6, 296 (2010).

    Article  CAS  Google Scholar 

  12. M. Park, Y. Kang, G. Wang, S. Dou, and H. Liu: The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 18, 455 (2008).

    Article  CAS  Google Scholar 

  13. M. Park, G. Wang, Y. Kang, D. Wexler, S. Dou, and H. Liu: Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 46, 750 (2007).

    Article  CAS  Google Scholar 

  14. X. Lou, Y. Wang, C. Yuan, J.Y. Lee, and L.A. Archer: Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325 (2006).

    Article  CAS  Google Scholar 

  15. S. Chou, J. Wang, H. Liu, and S. Dou: A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochem. Commun. 11, 242 (2009).

    Article  CAS  Google Scholar 

  16. J. Ba, J. Polleux, M. Antonietti, and M. Niederberger: Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures. Adv. Mater. 17, 2509 (2005).

    Article  CAS  Google Scholar 

  17. G. Li, Z. Feng, Y. Ou, D. Wu, R. Fu, and Y. Tong: Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir 26, 2209 (2010).

    Article  CAS  Google Scholar 

  18. G. Wang, H. Liu, J. Liu, S. Qiao, G.M. Lu, P. Munroe, and H. Ahn: Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium-ion batteries with superior performance. Adv. Mater. 22, 4944 (2010).

    Article  CAS  Google Scholar 

  19. J. Luo, Y. Wang, H. Xiong, and Y. Xia: Ordered mesoporous nanocrystalline titanium-carbide/carbon composites from in situ carbothermal reduction. Chem. Mater. 19, 4791 (2007).

    Article  CAS  Google Scholar 

  20. P. Liu, S.H. Lee, C.E. Tracy, Y.F. Yan, and J.A. Turner: Preparation and lithium insertion properties of mesoporous vanadium oxide. Adv. Mater. 14, 27 (2002).

    Article  CAS  Google Scholar 

  21. E. Kim, D. Son, T.C. Kim, J. Cho, B. Park, K.S. Ryu, and S.H. Chang: Novel tin-phosphate anode materials for Li-ion battery by mesoporous/crystalline composite. Angew. Chem. Int. Ed. 43, 5987 (2004).

    Article  CAS  Google Scholar 

  22. H.S. Zhou, D.L. Lin, and I. Honma: Solvent effect on visible light irradiation photocatalysis performance of nanosize-TiO2 powder prepared by hydrothermal method using various organic solvent. Nat. Mater. 3, 65 (2004).

    Article  Google Scholar 

  23. J. Shon, S. Kong, Y. Kim, J. Lee, W. Park, S. Park, and J. Kim: Solvent-free infiltration method for mesoporous SnO2 using mesoporous silica templates. Microporous Mesoporous Mater. 120, 441 (2009).

    Article  CAS  Google Scholar 

  24. H. Qiao, J. Li, J. Fu, D. Kumar, Q. Wei, Y. Cai, and F. Huang: Sonochemical synthesis of ordered SnO2/CMK-3 nanocomposites and their lithium storage properties. ACS Appl. Mater. Interfaces 3, 3704 (2011).

    Article  CAS  Google Scholar 

  25. D. Zhao, Q. Huo, J. Feng, B. Chmelka, and G. Stucky: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024 (1998).

    Article  CAS  Google Scholar 

  26. J. Shon, H. Kim, S. Kong, S. Hwang, T. Han, J. Kim, C. Park, S. Doo, and H. Chang: Nano-propping effect of residual silicas on reversible lithium storage over highly ordered mesoporous SnO2 materials. J. Mater. Chem. 19, 6727 (2009).

    Article  CAS  Google Scholar 

  27. H. Kim and J. Cho: Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J. Mater. Chem. 18, 771 (2008).

    Article  Google Scholar 

  28. S. Chang and M. Huang: Formation of short In2O3 nanorod arrays within mesoporous silica. J. Phys. Chem. C 112, 2304 (2008).

    Article  CAS  Google Scholar 

  29. G. Satishkumar, L. Titelman, and M.V. Landau: Mechanism for the formation of tin oxide nanoparticles and nanowires inside the mesopores of SBA-15. J. Solid State Chem. 182, 2822 (2009).

    Article  CAS  Google Scholar 

  30. S-M. Paek, E.J. Yoo, and I. Honma: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9, 72 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the Natural Science Foundation of China (11275121, 21241002, and 21371116), the Science and Technology Committee of Shanghai (11DZ110020, 13DZ1200502, and 13XD1424600), and the Shanghai Leading Academic Disciplines Project (S30109).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Jiang or Bing Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, Z., Chen, D., Jiang, Y. et al. Synthesis of nanoparticles, nanorods, and mesoporous SnO2 as anode materials for lithium-ion batteries. Journal of Materials Research 29, 609–616 (2014). https://doi.org/10.1557/jmr.2014.32

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.32

Navigation