Abstract
The mesoporous and nanorods SnO2 are synthesized by controlling the state of SnCl2·2H2O precursor with SBA-15 as hard template, and the possible formation mechanisms at different assembling modes inside the ordered mesoporous silica templates are proposed. In addition, SnO2 nanoparticles are synthesized by hydrolysis depositing method. The electrochemical tests of as-prepared samples indicate that the reticular stacking structure of the nanorods would limit the Li+ ions to intercalate, but the effect of volume expansion in this case upon cycling is insignificant. The mesostructure SnO2 tends to be stable after partial structural collapse at first few cycles. And the Li+ ions can readily intercalate and de-intercalate into/from its ordered channels structure, which provides a high capacity and an improved cycle property. Although SnO2 nanoparticles deliver high capacity at an early stage, the agglomeration may induce the capacity to drop rapidly after a certain number of cycles.
Similar content being viewed by others
References
X. Ji, K.T. Lee, and L.F. Nazar: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500 (2009).
J-M. Tarascon and M. Armand: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).
H.J. Wang, J.M. Wang, W.B. Fang, H. Wan, L. Liu, H.Q. Lian, H.B. Shao, W.X. Chen, J.Q. Zhang, and C.N. Cao: Structural and electrochemical properties of a porous nanostructured SnO2 film electrode for lithium-ion batteries. Electrochem. Commun. 12, 194 (2010).
B. Zhao, G. Zhang, J. Song, Y. Jiang, H. Zhuang, P. Liu, and T. Fang: Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity. Electrochim. Acta 56, 7340 (2011).
Z.F. Du, X.M. Yin, M. Zhang, Q.Y. Hao, Y.G. Wang, and T.H. Wang: Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. Mater. Lett. 64, 2076 (2010).
X. Li, A. Dhanabalan, L. Gu, and C. Wang: Three-dimensional porous core-shell Sn@carbon composite anodes for high-performance lithium-ion battery applications. Adv. Energy Mater. 2, 238 (2012).
J. Zhu, Z. Lu, M.O. Oo, H.H. Hng, J. Ma, H. Zhang, and Q. Yan: Synergetic approach to achieve enhanced lithium ion storage performance in ternary phased SnO2-Fe2O3/rGO composite nanostructures. J. Mater. Chem. 21, 12770 (2011).
V. Juttukonda, R.L. Paddock, J.E. Raymond, D. Denomme, A.E. Richardson, L.E. Slusher, and B.D. Fahlman: Facile synthesis of tin oxide nanoparticles stabilized by dendritic polymers. J. Am. Chem. Soc. 128, 420 (2006).
J. Liu, Y. Li, X. Huang, R. Ding, Y. Hu, J. Jiang, and L. Liao: Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J. Mater. Chem. 19, 1859 (2009).
J. Duan, S. Yang, H. Liu, J. Gong, H. Huang, X. Zhao, R. Zhang, and Y. Du: Single crystal SnO2 zigzag nanobelts. J. Am. Chem. Soc. 127, 127 (2005).
J. Ye, H. Zhang, R. Yang, X. Li, and L. Qi: Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6, 296 (2010).
M. Park, Y. Kang, G. Wang, S. Dou, and H. Liu: The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 18, 455 (2008).
M. Park, G. Wang, Y. Kang, D. Wexler, S. Dou, and H. Liu: Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 46, 750 (2007).
X. Lou, Y. Wang, C. Yuan, J.Y. Lee, and L.A. Archer: Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325 (2006).
S. Chou, J. Wang, H. Liu, and S. Dou: A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochem. Commun. 11, 242 (2009).
J. Ba, J. Polleux, M. Antonietti, and M. Niederberger: Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures. Adv. Mater. 17, 2509 (2005).
G. Li, Z. Feng, Y. Ou, D. Wu, R. Fu, and Y. Tong: Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir 26, 2209 (2010).
G. Wang, H. Liu, J. Liu, S. Qiao, G.M. Lu, P. Munroe, and H. Ahn: Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium-ion batteries with superior performance. Adv. Mater. 22, 4944 (2010).
J. Luo, Y. Wang, H. Xiong, and Y. Xia: Ordered mesoporous nanocrystalline titanium-carbide/carbon composites from in situ carbothermal reduction. Chem. Mater. 19, 4791 (2007).
P. Liu, S.H. Lee, C.E. Tracy, Y.F. Yan, and J.A. Turner: Preparation and lithium insertion properties of mesoporous vanadium oxide. Adv. Mater. 14, 27 (2002).
E. Kim, D. Son, T.C. Kim, J. Cho, B. Park, K.S. Ryu, and S.H. Chang: Novel tin-phosphate anode materials for Li-ion battery by mesoporous/crystalline composite. Angew. Chem. Int. Ed. 43, 5987 (2004).
H.S. Zhou, D.L. Lin, and I. Honma: Solvent effect on visible light irradiation photocatalysis performance of nanosize-TiO2 powder prepared by hydrothermal method using various organic solvent. Nat. Mater. 3, 65 (2004).
J. Shon, S. Kong, Y. Kim, J. Lee, W. Park, S. Park, and J. Kim: Solvent-free infiltration method for mesoporous SnO2 using mesoporous silica templates. Microporous Mesoporous Mater. 120, 441 (2009).
H. Qiao, J. Li, J. Fu, D. Kumar, Q. Wei, Y. Cai, and F. Huang: Sonochemical synthesis of ordered SnO2/CMK-3 nanocomposites and their lithium storage properties. ACS Appl. Mater. Interfaces 3, 3704 (2011).
D. Zhao, Q. Huo, J. Feng, B. Chmelka, and G. Stucky: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024 (1998).
J. Shon, H. Kim, S. Kong, S. Hwang, T. Han, J. Kim, C. Park, S. Doo, and H. Chang: Nano-propping effect of residual silicas on reversible lithium storage over highly ordered mesoporous SnO2 materials. J. Mater. Chem. 19, 6727 (2009).
H. Kim and J. Cho: Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J. Mater. Chem. 18, 771 (2008).
S. Chang and M. Huang: Formation of short In2O3 nanorod arrays within mesoporous silica. J. Phys. Chem. C 112, 2304 (2008).
G. Satishkumar, L. Titelman, and M.V. Landau: Mechanism for the formation of tin oxide nanoparticles and nanowires inside the mesopores of SBA-15. J. Solid State Chem. 182, 2822 (2009).
S-M. Paek, E.J. Yoo, and I. Honma: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9, 72 (2009).
ACKNOWLEDGMENTS
This work is supported by the Natural Science Foundation of China (11275121, 21241002, and 21371116), the Science and Technology Committee of Shanghai (11DZ110020, 13DZ1200502, and 13XD1424600), and the Shanghai Leading Academic Disciplines Project (S30109).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Jiao, Z., Chen, D., Jiang, Y. et al. Synthesis of nanoparticles, nanorods, and mesoporous SnO2 as anode materials for lithium-ion batteries. Journal of Materials Research 29, 609–616 (2014). https://doi.org/10.1557/jmr.2014.32
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2014.32