Skip to main content
Log in

Research on highly sensitive humidity sensor based on Tr-MWCNT/HEC composite films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study demonstrates a highly sensitive humidity sensor based on treated multiwalled carbon nanotube (tr-MWCNT) and hydroxyethyl cellulose (HEC) composite films. Tr-MWCNTs are obtained by mixed acid treatment to enhance their hydrophilicity and improve their dispersion in distilled water. Compared to tr-MWCNT/silicone rubber (SR) composite film, the humidity sensitivity of tr-MWCNT/HEC film is much higher than tr-MWCNT/SR film with the same film thickness. The humidity sensing mechanisms of tr-MWCNT/HEC composites are explained by electron donation model and swelling mechanism. Speaking and blowing experiments were also carried out and the results show that tr-MWCNT/HEC composite film is sensitive to both speaking and blowing; furthermore, it can distinguish the small humidity level difference between speaking and blowing. Other sensing characteristics, including response and recovery time, stability, and temperature effect, are also investigated. The high humidity sensitivity of tr-MWCNT/HEC composite film indicates that it can be an excellent humidity sensitive material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

Similar content being viewed by others

References

  1. C.Y. Lee and G.B. Lee: Humidity sensors: A review. Sens. Lett. 3, 1 (2005).

    Article  CAS  Google Scholar 

  2. B.M. Kulwicki: Humidity sensors. J. Am. Ceram. Soc. 74, 697 (1991).

    Article  CAS  Google Scholar 

  3. N. Yamazoe and Y. Shimizu: Humidity sensors: Principles and applications. Sens. Actuators 10, 379 (1986).

    Article  CAS  Google Scholar 

  4. Y. Sakai, Y. Sadaoka, and M. Matsuguchi: Humidity sensors based on polymer thin films. Sens. Actuators, B 35, 85 (1996).

    Article  CAS  Google Scholar 

  5. E. Traversa: Ceramic sensors for humidity detection: The state-of-the-art and future developments. Sens. Actuators, B 23, 135 (1995).

    Article  CAS  Google Scholar 

  6. S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  7. W.P. Chen, Z.G. Zhao, X.W. Liu, Z.X. Zhang, and C.G. Suo: A capacitive humidity sensor based on multi-wall carbon nanotubes (MWCNTs). Sensors 9, 7431 (2009).

    Article  CAS  Google Scholar 

  8. M. Saleem, K.S. Karimov, Z.M. Karieva, and A. Mateen: Humidity sensing properties of CNT–OD–VETP nanocomposite films. Phys. E 43, 28 (2010).

    Article  CAS  Google Scholar 

  9. J.T.W. Yeow and J.P.M. She: Carbon nanotube-enhanced capillary condensation for a capacitive humidity sensor. Nanotechnology 17, 5441 (2006).

    Article  CAS  Google Scholar 

  10. P.G. Su, Y.L. Sun, and C.C. Lin: A low humidity sensor made of quartz crystal microbalance coated with multi-walled carbon nanotubes/Nafion composite material films. Sens. Actuators, B 115, 338 (2006).

    Article  CAS  Google Scholar 

  11. Y. Zhang, K. Yu, R. Xu, D. Jiang, L. Luo, and Z. Zhu: Quartz crystal microbalance coated with carbon nanotube films used as humidity sensor. Sens. Actuators, A 120, 142 (2005).

    Article  CAS  Google Scholar 

  12. H.W. Chen, R.J. Wu, K.H. Chan, Y.L. Sun, and P.G. Su: The application of CNT/Nafion composite material to low humidity sensing measurement. Sens. Actuators, B 104, 80 (2005).

    Article  CAS  Google Scholar 

  13. M. Matsuguch, T. Kuroiwa, T. Miyagishi, S. Suzuki, T. Ogura, and Y. Sakai: Stability and reliability of capacitive-type relative humidity sensors using crosslinked polyimide films. Sens. Actuators, B 52, 53 (1998).

    Article  CAS  Google Scholar 

  14. J.H. Kim, S.M. Hong, J.S. Lee, B.M. Moon, and K. Kim: High sensitivity capacitive humidity sensor with a novel polyimide design fabricated by MEMS technology. In Nano/Micro Engineered and Molecular Systems, 2009. 4th IEEE International Conference on NEMS 2009, IEEE, pp. 703–706.

  15. L. Liu, X. Ye, K. Wu, R. Han, Z. Zhou, and T. Cui: Humidity sensitivity of multi-walled carbon nanotube networks deposited by dielectrophoresis. Sensors 9, 1714 (2009).

    Article  CAS  Google Scholar 

  16. P. Slobodian, P. Riha, A. Lengálová, P. Svoboda, and P. Sáha: Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection. Carbon 49, 2499 (2011).

    Article  CAS  Google Scholar 

  17. Y.M. Wong, W.P. Kang, J.L. Davidson, A. Wisitsora-At, and K.L. Soh: A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection. Sens. Actuators, B 93, 327 (2003).

    Article  CAS  Google Scholar 

  18. C.L. Cao, C.G. Hu, L. Fang, S.X. Wang, Y.S. Tian, and C.Y. Pan: Humidity sensor based on multi-walled carbon nanotube thin films. J. Nanomater. 2011, 5 (2011).

    Google Scholar 

  19. P.G. Su and C.S. Wang: In situ synthesized composite thin films of MWCNTs/PMMA doped with KOH as a resistive humidity sensor. Sens. Actuators, B 124, 303 (2007).

    Article  CAS  Google Scholar 

  20. S. Muto, O. Suzuki, T. Amano, and M. Morisawa: A plastic optical fibre sensor for real-time humidity monitoring. Meas. Sci. Technol. 14, 746 (2003).

    Article  CAS  Google Scholar 

  21. S. Harun, M. Batumalay, A. Lokman, H. Arof, H. Ahmad, and F. Ahmad: Tapered plastic optical fiber coated with HEC/PVDF for measurement of relative humidity. IEEE Sens. J. 13, 4702 (2013).

    Article  Google Scholar 

  22. L. Xia, L. Li, W. Li, T. Kou, and D. Liu: Novel optical fiber humidity sensor based on a no-core fiber structure. Sens. Actuators, A 190, 1 (2013).

    Article  CAS  Google Scholar 

  23. J. Xiong, Z. Zheng, X. Qin, M. Li, H. Li, and X. Wang: The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon 44, 2701 (2006).

    Article  CAS  Google Scholar 

  24. H. Yu, T. Cao, L. Zhou, E. Gu, D. Yu, and D. Jiang: Layer-by-layer assembly and humidity sensitive behavior of poly (ethyleneimine)/multiwall carbon nanotube composite films. Sens. Actuators, B 119, 512 (2006).

    Article  CAS  Google Scholar 

  25. K.P. Yoo, L.T. Lim, N.K. Min, M.J. Lee, C.J. Lee, and C.W. Park: Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films. Sens. Actuators, B 145, 120 (2010).

    Article  CAS  Google Scholar 

  26. Q.Y. Tang, Y.C. Chan, and K. Zhang: Fast response resistive humidity sensitivity of polyimide/multiwall carbon nanotube composite films. Sens. Actuators, B 152, 99 (2011).

    Article  CAS  Google Scholar 

  27. W.F. Jiang, S.H. Xiao, C.Y. Feng, H.Y. Li, and X.J. Li: Resistive humidity sensitivity of arrayed multi-wall carbon nanotube nests grown on arrayed nanoporous silicon pillars. Sens. Actuators, B 125, 651 (2007).

    Article  CAS  Google Scholar 

  28. J. Chu, X. Peng, P. Feng, Y. Sheng, and J. Zhang: Study of humidity sensors based on nanostructured carbon films produced by physical vapor deposition. Sens. Actuators, B 178, 508 (2013).

    Article  CAS  Google Scholar 

  29. O.K. Varghese, P.D. Kichambre, D. Gong, K.G. Ong, E.C. Dickey, and C.A. Grimes: Gas sensing characteristics of multi-wall carbon nanotubes. Sens. Actuators, B 81, 32 (2001).

    Article  CAS  Google Scholar 

  30. A. Maiti, J. Andzelm, N. Tanpipat, and P. von Allmen: Effect of adsorbates on field emission from carbon nanotubes. Phys. Rev. Lett. 87, 155502 (2001).

    Article  CAS  Google Scholar 

  31. M. Bruzzi, S. Miglio, M. Scaringella, G. Bongiorno, P. Piseri, A. Podesta, and P. Milani: First study of humidity sensors based on nanostructured carbon films produced by supersonic cluster beam deposition. Sens. Actuators, B 100, 173 (2004).

    Article  CAS  Google Scholar 

  32. H.P. Hong, K.H. Jung, J.H. Kim, K.H. Kwon, C.J. Lee, K.N. Yun, and N.K. Min: Percolated pore networks of oxygen plasma-activated multi-walled carbon nanotubes for fast response, high sensitivity capacitive humidity sensors. Nanotechnology 24, 085501 (2013).

    Article  CAS  Google Scholar 

  33. K. Li, C. Zhang, Z. Du, H. Li, and W. Zou: Preparation of humidity-responsive antistatic carbon nanotube/PEI nanocomposites. Synth. Met. 162, 2010 (2012).

    Article  CAS  Google Scholar 

  34. J. Lee, D. Cho, and Y. Jeong: A resistive-type sensor based on flexible multi-walled carbon nanotubes and polyacrylic acid composite films. Solid-State Electron. 87, 80 (2013).

    Article  CAS  Google Scholar 

  35. Y. Wang, S. Park, J.T. Yeow, A. Langner, and F. Müller: A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sens. Actuators, B 149, 136 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This research was supported by the National Science Foundation of China (Nos. 61471155 and 61401141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Huang, Y., Ma, Y. et al. Research on highly sensitive humidity sensor based on Tr-MWCNT/HEC composite films. Journal of Materials Research 29, 2845–2853 (2014). https://doi.org/10.1557/jmr.2014.328

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.328

Navigation