Skip to main content
Log in

Structure and gas permeation of nanoporous carbon membranes based on RF resin/F-127 with variable catalysts

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoporous carbon membranes (NCMs) were fabricated by the blends of resorcinol–formaldehyde (RF) resin and Pluronic F-127 through the processes of assembly, membrane-casting, solidification, and pyrolysis. The effect of the catalyst type (i.e., NaOH and Na2CO3) on the structure and property of precursors and their derived NCMs was investigated. The as-obtained precursors and NCMs were characterized by thermogravimetry, differential scanning calorimetry, x-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, elemental analysis, nitrogen adsorption, and gas permeation techniques. The results have shown that defect-free NCMs can be easily procured by the NaOH and Na2CO3 catalysts. In contrast, the precursor made from the Na2CO3 catalyst exhibits higher char yield than that from NaOH after pyrolysis. NaOH-based NCMs are beneficial for the separation of H2/N2 and CO2/N2 gas pairs. Na2CO3-based NCMs are more favorable for the separation of O2/N2 with an ideal selectivity of 6.29 and an O2 permeability of 3.27 Barrer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. A.F. Ismail, D. Rana, T. Matsuura, and H.C. Foley: Carbon-based Membranes for Separation Processes (Springer Science+Business Media, LLC, New York, USA, 2011), p. 302.

    Google Scholar 

  2. Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J.E. Fischer, B. Yi, H.C. Foley, and M.W. Barsoum: Nanoporous carbide-derived carbon with tunable pore size. Nat. Mater. 2, 591 (2003).

    CAS  Google Scholar 

  3. G. Che, B.B. Lakshmi, E.R. Fisher, and C.R. Martin: Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346 (1998).

    CAS  Google Scholar 

  4. M.P. Siegal, D.L. Overmyer, R.J. Kottenstette, D.R. Tallant, and W.G. Yelton: Nanoporous-carbon films for microsensor preconcentrators. Appl. Phys. Lett. 80, 3940 (2002).

    CAS  Google Scholar 

  5. J. Jiang, J.B. Klauda, and S.I. Sandler: Monte Carlo simulation of O2 and N2 adsorption in nanoporous carbon (C168 Schwarzite). Langmuir 19, 3512 (2003).

    CAS  Google Scholar 

  6. D.R. Paul: Creating new types of carbon-based membranes. Science 335, 413 (2012).

    CAS  Google Scholar 

  7. M.G. Buonomenna, W. Yave, and G. Golemme: Some approaches for high performance polymer based membranes for gas separation: Block copolymers, carbon molecular sieves and mixed matrix membranes. RSC Adv. 2, 10745 (2012).

    CAS  Google Scholar 

  8. P.S. Tin, Y. Xiao, and T-S. Chung: Polyimide-carbonized membranes for gas separation: Structural, composition, and morphological control of precursors. Sep. Purifi. Rev. 35, 285 (2006).

    CAS  Google Scholar 

  9. W.N.W. Salleh, A.F. Ismail, T. Matsuura, and M.S. Abdullah: Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review. Sep. Purifi. Rev. 40, 261 (2011).

    CAS  Google Scholar 

  10. F.K. Katsaros, Th.A. Steriotis, G.E. Romanos, M. Konstantakou, A.K. Stubos, and N.K. Kanellopoulos: Preparation and characterisation of gas selective microporous carbon membranes. Microporous Mesoporous Mater. 99, 181 (2007).

    CAS  Google Scholar 

  11. A.B. Fuertes and I. Menendez: Separation of hydrocarbon gas mixtures using phenolic resin-based carbon membranes. Sep. Purif. Technol. 28, 29 (2002).

    CAS  Google Scholar 

  12. Y-R. Dong, M. Nakao, N. Nishiyama, Y. Egashira, and K. Ueyama: Gas permeation and pervaporation of water/alcohols through the microporous carbon membranes prepared from resorcinol/formaldehyde/quaternary ammonium compounds. Sep. Purif. Technol. 73, 2 (2010).

    CAS  Google Scholar 

  13. W.N.W. Salleh and A.F. Ismail: Effect of stabilization condition on PEI/PVP-based carbon hollow fiber membranes properties. Sep. Sci. Technol. 48, 1030 (2013).

    CAS  Google Scholar 

  14. X. Yin, N. Chu, J. Yang, J. Wang, and Z. Li: Thin zeolite T/carbon composite membranes supported on the porous alumina tubes for CO2 separation. Int. J. Greenhouse Gas Control 15, 55 (2013).

    CAS  Google Scholar 

  15. B. Zhang, Y. Shi, Y. Wu, T. Wang, and J. Qiu: Towards the preparation of ordered mesoporous carbon/carbon composite membranes for gas separation. Sep. Sci. Technol. 49, 171 (2014).

    Google Scholar 

  16. H.J. Lee, H. Suda, K. Haraya, and S.H. Moon: Gas permeation properties of carbon molecular sieving membranes derived from the polymer blend of polyphenylene oxide (PPO)/polyvinylpyrrolidone (PVP). J. Membr. Sci. 296, 139 (2007).

    CAS  Google Scholar 

  17. P.S. Rao, M.Y. Wey, H.H. Tseng, I.A. Kumar, and T.H. Weng: A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application. Microporous Mesoporous Mater. 113, 499 (2008).

    CAS  Google Scholar 

  18. Y.K. Kim, H.B. Park, and Y.M. Lee: Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: Effect of the molecular weight of polyvinylpyrrolidone. J. Membr. Sci. 251, 159 (2005).

    CAS  Google Scholar 

  19. X. Zhang, H. Hu, Y. Zhu, and S. Zhu: Carbon molecular sieve membranes derived from phenol formaldehyde novolac resin blended with poly(ethylene glycol). J. Membr. Sci. 289, 86 (2007).

    CAS  Google Scholar 

  20. S.S. Hosseini and T.S. Chung: Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. J. Membr. Sci. 328, 174 (2009).

    CAS  Google Scholar 

  21. C. Liang, K. Hong, G.A. Guiochon, J.W. Mays, and S. Dai: Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew. Chem., Int. Ed. 43, 5785 (2004).

    CAS  Google Scholar 

  22. L. Song, D. Feng, N.J. Fredin, K.G. Yager, R.L. Jones, Q. Wu, D. Zhao, and B.D. Vogt: Challenges in the fabrication of mesoporous carbon films with ordered cylindrical pores via phenolic oligomer self-assembly with triblock copolymers. ACS Nano 4, 189 (2010).

    CAS  Google Scholar 

  23. S. Kataoka, T. Yamamoto, Y. Inagi, A. Endo, M. Nakaiwa, and T. Ohmori: Synthesis of ordered mesoporous carbon thin films at various temperatures in vapor infiltration method. Carbon 46, 1358 (2008).

    CAS  Google Scholar 

  24. S. Tanaka, N. Nakatani, A. Doi, and Y. Miyake: Preparation of ordered mesoporous carbon membranes by a soft-templating method. Carbon 49, 3184 (2011).

    CAS  Google Scholar 

  25. B. Zhang, Y. Shi, Y. Wu, T. Wang, and J. Qiu: Preparation and characterization of supported ordered nanoporous carbon membranes for gas separation. J. Appl. Polym. Sci. 131, 2136 (2014).

    Google Scholar 

  26. D. Liu, J-H. Lei, L-P. Guo, and K-J. Deng: Simple hydrothermal synthesis of ordered mesoporous carbons from resorcinol and hexamine. Carbon 49, 2113 (2011).

    CAS  Google Scholar 

  27. A.M. ElKhatat and S.A. Al-Muhtaseb: Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 23, 2887 (2011).

    CAS  Google Scholar 

  28. B. Zhang, T. Wang, S. Zhang, J. Qiu, and X. Jian: Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone). Carbon 44, 2764 (2006).

    CAS  Google Scholar 

  29. A. Benk, M. Talu, and A. Coban: Phenolic resin binder for the production of metallurgical quality briquettes from coke breeze: Part II the effect of the type of the basic catalyst used in the resol production on the tensile strength of the formed coke briquettes. Fuel Process. Technol. 89, 38 (2008).

    CAS  Google Scholar 

  30. N. Job, F. Panariello, J. Marien, M. Crine, J. Pirard, and A. Léonard: Synthesis optimization of organic xerogels produced from convective air-drying of resorcinol–formaldehyde gels. J. Non-Cryst. Solids 352, 24 (2006).

    CAS  Google Scholar 

  31. C. Lin and J.A. Ritter: Effect of synthesis pH on the structure of carbon xerogels. Carbon 35, 1271 (1997).

    CAS  Google Scholar 

  32. H-Z. Wei, C-G. Wang, H-Q. Wang, and Y-J. Bai: Synthesis of high crosslinking density phenolic resin. J. Adv. Mater. 38, 54 (2006).

    Google Scholar 

  33. T. Holopainen, L. Alvila, J. Rainio, and T.T. Pakkanen: Phenol-formaldehyde resol resins studied by 13C-NMR spectroscopy, gel permeation chromatography, and differential scanning calorimetry. J. Appl. Polym. Sci. 66, 1183 (1997).

    CAS  Google Scholar 

  34. J-C. Munoz, H. Kua, F. Cardona, and D. Rogers: Effects of catalysts and post-curing conditions in the polymer network of epoxy and phenolic resins: Preliminary results. J. Mater. Process. Technol. 202, 486 (2008).

    CAS  Google Scholar 

  35. A.W. Christiansen: Resorcinol–formaldehyde reactions in dilute solution observed by carbon-13 NMR spectroscopy. J. Appl. Polym. Sci. 75, 1760 (2000).

    CAS  Google Scholar 

  36. C. Xue, B. Tu, and D. Zhao: Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly. Nano Res. 2, 242 (2009).

    CAS  Google Scholar 

  37. A-H. Lu, B. Spliethoff, and F. Schüth: Aqueous synthesis of ordered mesoporous carbon via self-assembly catalyzed by amino acid. Chem. Mater. 20, 5314 (2008).

    CAS  Google Scholar 

  38. S. Tanaka, A. Doi, N. Nakatani, Y. Katayama, and Y. Miyake: Synthesis of ordered mesoporous carbon films, powders, and fibers by direct triblock-copolymer-templating method using an ethanol/water system. Carbon 47, 2688 (2009).

    CAS  Google Scholar 

  39. W. Zhou, M. Yoshino, H. Kita, and K. Okamoto: Carbon molecular sieve membranes derived from phenolic resin with a pendant sulfonic acid group. Ind. Eng. Chem. Res. 40, 4801 (2001).

    CAS  Google Scholar 

  40. R.W. Pekala: Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221 (1989).

    CAS  Google Scholar 

  41. A. Lu, A. Kiefer, and W. Schmidt: Synthesis of polyacrylonitrile-based ordered mesoporous carbon with tunable pore structures. Chem. Mater. 16, 100 (2004).

    CAS  Google Scholar 

  42. K.P. Gierszal, T-W. Kim, R. Ryoo, and M. Jaroniec: Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous p6mm and ia3̄d mesostructures as templates. J. Phys. Chem. B 109, 23263 (2005).

    CAS  Google Scholar 

  43. A.B. Fuertes: Synthesis of ordered nanoporous carbons of tunable mesopore size by templating SBA-15 silica materials. Microporous Mesoporous Mater. 67, 273 (2004).

    CAS  Google Scholar 

  44. S. Tanaka, N. Nishiyama, Y. Egashira, and K. Ueyama: Synthesis of ordered mesoporous carbons with channel structure from an organic–organic nanocomposite. Chem. Commun. 2125 (2005).

  45. X. Zhang, H. Hu, Y. Zhu, and S. Zhu: Effect of carbon molecular sieve on phenol formaldehyde novolac resin based carbon membranes. Sep. Purif. Technol. 52, 261 (2006).

    CAS  Google Scholar 

  46. J. Carretero, J.M. Benito, A. Guerrero-Ruiz, I. Rodríguez-Ramos, and M.A. Rodríguez: Infiltrated glassy carbon membranes in γ-Al2O3 supports. J. Membr. Sci. 281, 500 (2006).

    CAS  Google Scholar 

  47. M. Yoshimune, T. Yamamoto, M. Nakaiwa, and K. Haraya: Preparation of highly mesoporous carbon membranes via a sol–gel process using resorcinol and formaldehyde. Carbon 46, 1031 (2008).

    CAS  Google Scholar 

  48. B. Park, B. Ridel, E. Hsu, and J. Shields: Differential scanning calorimetry of phenol–formaldehyde resins cure-accelerated by carbonates. Polymer 40, 1689 (1999).

    CAS  Google Scholar 

  49. S. Tanaka, T. Yasuda, Y. Katayama, and Y. Miyake: Pervaporation dehydration performance of microporous carbon membranes prepared from resorcinol/formaldehyde polymer. J. Membr. Sci. 379, 52 (2011).

    CAS  Google Scholar 

  50. T. Horikawa, J. Hayashi, and K. Muroyama: Controllability of pore characteristics of resorcinol–formaldehyde carbon aerogel. Carbon 42, 1625 (2004).

    CAS  Google Scholar 

  51. I. Menendez and A.B. Fuertes: Aging of carbon membranes under different environments. Carbon 39, 733 (2001).

    CAS  Google Scholar 

  52. T. Wang, B. Zhang, J. Qiu, Y. Wu, S. Zhang, and Y. Cao: Effects of sulfone/ketone in poly(phthalazinone ether sulfone ketone) on the gas permeation of their derived carbon membranes. J. Membr. Sci. 330, 319 (2009).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (20906063), the Liaoning Natural Science Foundation of China (20102170), the Program for Liaoning Excellent Talents in University (LJQ2012010), and the State Key Laboratory of Fine Chemicals (KF1107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Dang, X., Wu, Y. et al. Structure and gas permeation of nanoporous carbon membranes based on RF resin/F-127 with variable catalysts. Journal of Materials Research 29, 2881–2890 (2014). https://doi.org/10.1557/jmr.2014.327

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.327

Navigation