Skip to main content
Log in

Superelasticity of TiNi-based shape memory alloys at micro/nanoscale

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Superelasticity of shape memory alloy (SMA) results from the reversible thermoelastic martensitic transformation. Although this property has been studied extensively at the macroscale, the study of this superelastic behavior at the micro/nanoscale is relatively new. In this work, we processed TiNi-based SMAs with different compositions and different phase transformation temperatures. Nanoindentations were performed with different peak loads and at various temperatures to systematically characterize the degree of localized stress-induced martensitic transformation at the nanoscale for each SMA. Micropillar compression tests were also performed to study the global superelastic behavior at the microscale. The physics of stress-induced martensitic transformation versus the phase transformation temperature, the testing temperature, and the peak load relations was explored and the difference between the localized and the global superelastic behaviors was discussed. Our results demonstrate the potential of integrating TiNi-based SMAs into functional micro- and nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. K. Otsuka and K. Shimizu: Pseudoelasticity and shape memory effects in alloys. Int. Metals Rev. 31, 93 (1986).

    CAS  Google Scholar 

  2. S. Miyazaki, K. Otsuka, and C.M. Wayman: The shape memory mechanism associated with the martensitic transformation in Ti-Ni alloys—I. Self-accommodation. Acta Metall. 37, 1873 (1989).

    Article  CAS  Google Scholar 

  3. S. Miyazaki, K. Otsuka, and C.M. Wayman: The shape memory mechanism associated with the martensitic transformation in Ti-Ni alloys—II. Variant coalescence and shape recovery. Acta Metall. 37, 1885 (1989).

    Article  CAS  Google Scholar 

  4. S.K. Wu and H.C. Lin: Recent development of TiNi-based shape memory alloys in Taiwan. Mater. Chem. Phys. 64, 81 (2000).

    Article  CAS  Google Scholar 

  5. A.J. Muir Wood and T.W. Clyne: Measurement and modelling of the nanoindentation response of shape memory alloys. Acta Mater. 54, 5607 (2006).

    Article  Google Scholar 

  6. A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, and S. Viscuso: The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators. Sens. Actuators A 158, 149 (2010).

    Article  CAS  Google Scholar 

  7. Y. Fu, H. Du, W. Huang, S. Zhang, and M. Hu: TiNi-based thin films in MEMS applications: A review. Sens. Actuators A 112, 395 (2004).

    Article  CAS  Google Scholar 

  8. Y. Bellouard: Shape memory alloys for microsystems: A review from a material research perspective. Mater. Sci. Eng., A 481–482, 582 (2008).

    Article  Google Scholar 

  9. G.A. Shaw, D.S. Stone, A.D. Johnson, A.B. Ellis, and W.C. Crone: Shape memory effect in nanoindentation of nickel–titanium thin films. Appl. Phys. Lett. 83, 257 (2003).

    Article  CAS  Google Scholar 

  10. X.G. Ma and K. Komvopoulos: Nanoscale pseudoelastic behavior of indented titanium–nickel films. Appl. Phys. Lett. 83, 3773 (2003).

    Article  CAS  Google Scholar 

  11. P. Yiu, J.S.C. Jang, S.Y. Chang, Y.C. Chen, J.P. Chu, and C.H. Hsueh: Plasticity enhancement of Zr-based bulk metallic glasses by direct current electropulsing. J. Alloys Compd. 525, 68 (2012).

    Article  CAS  Google Scholar 

  12. P. Yiu, Y.C. Chen, J.P. Chu, S.Y. Chang, H. Bei, J.S.C. Jang, and C.H. Hsueh: Rapid relaxation and embrittlement of Zr-based bulk metallic glasses by electropulsing. Intermetallics 34, 43 (2013).

    Article  CAS  Google Scholar 

  13. J. Pfetzing-Micklich, N. Wieczorek, T. Simon, B. Maaß, and G. Eggeler: Direct microstructural evidence for the stress induced formation of martensite during nanoindentation of NiTi. Mater. Sci. Eng., A 591, 33 (2014).

    Article  CAS  Google Scholar 

  14. J. San Juan, M.L. No, and C.A. Schuh: Thermomechanical behavior at the nanoscale and size effects in shape memory alloys. J. Mater. Res. 26, 2461 (2011).

    Article  CAS  Google Scholar 

  15. C.P. Frick, S. Orso, and E. Arzt: Loss of pseudoelasticity in nickel–titanium sub-micron compression pillar. Acta Mater. 55, 3845 (2007).

    Article  CAS  Google Scholar 

  16. D.M. Norfleet, P.M. Sarosi, S. Manchiraju, M.F-X. Wagner, M.D. Uchic, P.M. Anderson, and M.J. Mills: Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals. Acta Mater. 57, 3549 (2009).

    Article  CAS  Google Scholar 

  17. J. Ye, R.K. Mishra, A.R. Pelton, and A.M. Minor: Direct observation of the NiTi martensitic phase transformation in nanoscale volumes. Acta Mater. 58, 490 (2010).

    Article  CAS  Google Scholar 

  18. C.P. Frick, B.G. Clark, A.S. Schneider, R. Maab, S. Van Petegem, and H. Van Swygenhoven: On the plasticity of small-scale nickel-titanium shape memory alloys. Scr. Mater. 62, 492 (2010).

    Article  CAS  Google Scholar 

  19. M.L. Bowers, X. Chen, M. De Graef, P.M. Anderson, and M.J. Mills: Characterization and modeling of defects generated in pseudoelastically deformed NiTi microcrystals. Scr. Mater. 78–79, 69 (2014).

    Article  Google Scholar 

  20. J. Frenzel, E.P. George, A. Dlouhy, Ch. Somsen, M.F-X. Wagner, and G. Eggeler: Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 58, 3444 (2010).

    Article  CAS  Google Scholar 

  21. S. Miyazaki and K. Otsuka: Mechanical behaviour associated with the premartensitic rhombohedral-phase transition in a Ti50Ni47Fe3 alloy. Philos. Mag. 50, 393 (1984).

    Article  CAS  Google Scholar 

  22. J. Olbricht, A. Yawny, J.L. Pelegrina, A. Dlouhy, and G. Eggeler: On the stress-induced formation of R-phase in ultra-fine-grained Ni-rich NiTi shape memory alloys. Metall. Mater. Trans. A 42, 2556 (2011).

    Article  CAS  Google Scholar 

  23. A.J. Muir Wood, S. Sanjabi, Y.Q. Fu, Z.H. Barber, and T.W. Clyne: Nanoindentation of binary and ternary Ni–Ti-based shape memory alloy thin films. Surf. Coat. Technol. 202, 3115 (2008).

    Article  CAS  Google Scholar 

  24. A. Ishida and M. Sato: Thickness effect on shape memory behavior of Ti-50.0at.%Ni thin film. Acta Mater. 51, 5571 (2003).

    Article  CAS  Google Scholar 

  25. J. Zhang, C. Somsen, T. Simon, X. Ding, S. Hou, S. Ren, X. Ren, G. Eggeler, K. Otsuka, and J. Sun: Leaf-like dislocation substructures and the decrease of martensitic start temperatures: A new explanation for functional fatigue during thermally induced martensitic transformations in coarse-grained Ni-rich Ti–Ni shape memory alloys. Acta Mater. 60, 1999 (2012).

    Article  CAS  Google Scholar 

  26. K.L. Johnson: Contact Mechanics (Cambridge Univ. Press, Cambridge, United kingdom, 1985), pp. 93.

    Book  Google Scholar 

  27. C.H. Hsueh and P. Miranda: Combined empirical–analytical method for determining contact radius and indenter displacement during Hertzian indentation on coating/substrate systems. J. Mater. Res. 19, 94 (2004).

    Article  CAS  Google Scholar 

  28. K. Tsuchiya, Y. Hada, M. Ohnuma, K. Nakajima, T. Koike, Y. Todaka, and M. Umemoto: Production of TiNi amorphous/nanocrystalline wires with high strength and elastic modulus by severe cold drawing. Scr. Mater. 60, 749 (2009).

    Article  CAS  Google Scholar 

  29. C.P. Frick, T.W. Lang, K. Spark, and K. Gall: Stress-induced martensitic transformations and shape memory at nanometer scales. Acta Mater. 54, 2223 (2006).

    Article  CAS  Google Scholar 

  30. K. Otsuka and X. Ren: Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511 (2005).

    Article  CAS  Google Scholar 

  31. H. Zhang, B.E. Schuster, Q. Wei, and K.T. Ramesh: The design of accurate micro-compression experiments. Scr. Mater. 54, 181 (2006).

    Article  CAS  Google Scholar 

  32. C.A. Schuh, J.K. Mason, and A.C. Lund: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).

    Article  CAS  Google Scholar 

  33. S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka: Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys. Metall. Trans. 17A, 115 (1986).

    Article  CAS  Google Scholar 

  34. H. Tobushi, Y. Shimeno, T. Hachisuka, and K. Tanaka: Influence of strain rate on superelastic properties of TiNi shape memory alloy. Mech. Mater. 30, 141 (1998).

    Article  Google Scholar 

  35. J. San Juan and M.L. Nó: Superelasticity and shape memory at nano-scale: Size effects on the martensitic transformation. J. Alloys Compd.. 577S, S25 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project was jointly supported by National Taiwan University under Contract No. 102R104100 and Contract No. 103R8918 and SI was supported by the Grant-in-Aid for Scientific Research (C) (KAKENHI, No. 13350837) from Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hway Hsueh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nien, CY., Wang, HK., Chen, CH. et al. Superelasticity of TiNi-based shape memory alloys at micro/nanoscale. Journal of Materials Research 29, 2717–2726 (2014). https://doi.org/10.1557/jmr.2014.322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.322

Navigation