Skip to main content
Log in

Effects of conducting oxide barrier layers on the stability of Crofer® 22 APU/Ca3Co4O9 interfaces

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Practical implementation of oxide thermoelectrics on an industrial or commercial scale for waste heat energy conversion requires the development of chemically stable interfaces between metal interconnects and oxide thermoelements that exhibit low electrical contact resistances. A commercially available high-chrome iron alloy (i.e., Crofer® 22 APU) serving as the interconnect metal was spray coated with LaNi0.6Fe0.4O3 (LNFO) or (Mn,Co)3O4 spinel and then interfaced with a p-type thermoelectric material—calcium cobaltate (Ca3Co4O9)—using spark plasma sintering. The interfaces have been characterized in terms of their thermal and electronic transport properties and chemical stability. With long-term exposure of the interfaced samples to 800 °C in air, the cobalt–manganese spinel acted as a diffusion barrier between the Ca3Co4O9 and the Crofer® 22 APU alloy resulting in improved interfacial stability compared to that of samples containing LNFO as a barrier layer, and especially those without any barrier. The initial area specific interfacial resistance of the Ca3Co4O9/(Mn,Co)3O4/Crofer® 22 APU interface at 800 °C was found to be ∼1 mΩ·cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. J. He, Y. Liu, and R. Funahashi: Oxide thermoelectrics: The challenges, progress, and outlook. J. Mater. Res. 26(15), 1762–1772 (2011).

    Article  CAS  Google Scholar 

  2. R. Funahashi and S. Urata: Fabrication and application of an oxide thermoelectric system. Int. J. Appl. Ceram. Technol. 4(4), 297–307 (2007).

    Article  CAS  Google Scholar 

  3. J.G. Noudem, S. Lemonnier, M. Prevel, E.S. Reddy, E. Guilmeau, and C. Goupil: Thermoelectric ceramics for generators. J. Eur. Ceram. Soc. 28(1), 41–48 (2008).

    Article  CAS  Google Scholar 

  4. L. Han, Y. Jiang, S. Li, H. Su, X. Lan, K. Qin, T. Han, H. Zhong, L. Chen, and D. Yu: High temperature thermoelectric properties and energy transfer devices of Ca3Co4−xAgxO9 and Ca1−ySmyMnO3. J. Alloys Compd. 509(36), 8970–8977 (2011).

    Article  CAS  Google Scholar 

  5. T.C. Holgate, L. Han, N. Wu, E.D. Bøjesen, M. Christensen, B.B. Iversen, N.V. Nong, and N. Pryds: Characterization of the interface between an Fe–Cr alloy and the p-type thermoelectric oxide Ca3Co4O9. J. Alloys Compd. 582, 827–833 (2014).

    Article  CAS  Google Scholar 

  6. T. Komatsu, H. Arai, R. Chiba, K. Nozawa, M. Arakawa, and K. Sato: Cr poisoning suppression in solid oxide fuel cells using LaNi (Fe) O3 electrodes. Electrochem. Solid-State Lett. 9(1), A9–A12 (2006).

    Article  CAS  Google Scholar 

  7. Z. Yang, G-G. Xia, X-H. Li, and J.W. Stevenson: (Mn,Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. Int. J. Hydrog. Energy 32(16), 3648–3654 (2007).

    Article  CAS  Google Scholar 

  8. G.V. Pattarkine, N. Dasgupta, and A.V. Virkar: Oxygen transport resistant and electrically conductive perovskite coatings for solid oxide fuel cell interconnects. J. Electrochem. Soc. 155(10), B1036–B1046 (2008).

    Article  CAS  Google Scholar 

  9. W. Zhang, B. Hua, N. Duan, J. Pu, B. Chi, and J. Li: Cu-Fe spinel coating as oxidation barrier for Fe-16Cr metallic interconnect in solid oxide fuel cells. J. Electrochem. Soc. 159(9), C388–C392 (2012).

    Article  CAS  Google Scholar 

  10. N.S. Waluyo, B-K. Park, S-B. Lee, T-H. Lim, S-J. Park, R-H. Song, and J-W. Lee: (Mn,Cu)3O4-based conductive coatings as effective barriers to high-temperature oxidation of metallic interconnects for solid oxide fuel cells. J. Solid State Electrochem. 18(2), 445–452 (2014).

    Article  CAS  Google Scholar 

  11. R.N. Basu, F. Tietz, O. Teller, E. Wessel, H.P. Buchkremer, and D. Stöver: LaNi0.6Fe0.4O3 as a cathode contact material for solid oxide fuel cells. J. Solid State Electrochem. 7(7), 416–420 (2003).

    Article  CAS  Google Scholar 

  12. J. Wu and X. Liu: Recent development of SOFC metallic interconnect. J. Mater. Sci. Technol. 26(4), 293–305 (2010).

    Article  CAS  Google Scholar 

  13. T.C. Holgate, N. Wu, M. Søndergaard, B.B. Iversen, N.V. Nong, and N. Pryds: Kinetics, stability, and thermal contact resistance of nickel–Ca3Co4O9 interfaces formed by spark plasma sintering. J. Electron. Mater. 42(7), 1661–1668 (2013).

    Article  CAS  Google Scholar 

  14. N. Wu, T.C. Holgate, N.V. Nong, N. Pryds, and S. Linderoth: Effects of synthesis and spark plasma sintering conditions on the thermoelectric properties of Ca3Co4O9+δ. J. Electron. Mater. 42(7), 2134–2142 (2013).

    Article  CAS  Google Scholar 

  15. K. Wang, Y. Liu, and J.W. Fergus: Interactions between SOFC interconnect coating materials and chromia. J. Am. Ceram. Soc. 94(12), 4490–4495 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Ming Chen, Sebastian Molin, and Nikolaos Bonanos for many helpful discussions, as well as Ebtisam Abdellahi for assistance with sample preparation for SEM. The authors also thank the Programme Commission on Energy and Environment (EnMi), which is part of the Danish Council for Strategic Research (Contract No. 10-093971), for sponsoring the research of the OTE-POWER project, and the Danish National Research Foundation (DNRF93) for additional funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim C. Holgate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holgate, T.C., Han, L., Wu, N. et al. Effects of conducting oxide barrier layers on the stability of Crofer® 22 APU/Ca3Co4O9 interfaces. Journal of Materials Research 29, 2891–2897 (2014). https://doi.org/10.1557/jmr.2014.320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.320

Navigation