Skip to main content
Log in

Electrochemical deposition and characterization of carboxylic acid functionalized PEDOT copolymers

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Conjugated polymer films are of considerable current interest for functionalizing the surfaces of a wide variety of devices including implantable biomedical electronics. Toward these ends, copolymer films of 3,4-ethylenedioxythiophene (EDOT) with a carboxylic acid functional EDOT (EDOTacid) were electrochemically deposited and characterized as a systematic function of the EDOTacid content (0, 25, 50, 75, and 100%). Chemical surface characterization of the films confirmed the presence of both EDOT and EDOTacid units. Toluidene blue assays showed that the surface concentration of the carboxylic acid groups increased to a maximum of 2.75 nmoles/mm2, and the contact angle measurements confirmed the increased hydrophilicity of the films with increasing EDOTacid content (decreasing from 52.6 to 32.5 degrees). Cyclic voltammetry showed that the films had comparable charge storage capacities regardless of their composition. The morphology of the films varied depending on the monomer feed ratio. The addition of EDOTacid induced a transition from a nodular, porous surface to a more dense, pleated surface structure. These methods provide a facile means for synthesizing electrically active carboxylic acid functional poly(3,4-ethylenedioxythiophene) copolymer films with tunable hydrophilicity and surface morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. A. Norlin, J. Pan, and C. Leygraf: Electrochemical behavior of stimulation/sensing materials for pacemaker electrode applications III. Nanoporous and smooth carbon electrodes. J. Electrochem. Soc. 152(9), J110 (2005).

    CAS  Google Scholar 

  2. M.L. Kringelbach, N. Jenkinson, S.L.F. Owen, and T.Z. Aziz: Translational principles of deep brain stimulation. Nat. Rev. Neurosci. 8(8), 623 (2007).

    CAS  Google Scholar 

  3. M.D. Eisen: Djourno, Eyries, and the first implanted electrical neural stimulator to restore hearing. Otol. Neurotol. 24(3), 500 (2003).

    Google Scholar 

  4. J.D. Weiland, W.T. Liu, and M.S. Humayun: Retinal Prosthesis, in Annual Review of Biomedical Engineering (Annual Reviews, 2005), pp. 361.

  5. A. Mercanzini and P. Renaud: Microfabricated Cortical Neuroprostheses (CRC Press, Boca Raton, FL, 2011).

    Google Scholar 

  6. D.H. Kim, S.M. Richardson-Burns, L.K. Povlich, M.R. Abidian, S. Spanninga, J.L. Hendricks, and D.C. Martin: Soft, Fuzzy, and Bioactive Conducting Polymers for Improving the Chronic Performance of Neural Prosthetic Devices (CRC Press, Boca Raton, FL, 2007).

    Google Scholar 

  7. L. Groenendaal, G. Zotti, P.H. Aubert, S.M. Waybright, and J.R. Reynolds: Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv. Mater. 15(11), 855 (2003).

    CAS  Google Scholar 

  8. S.R. Forrest: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428(6986), 911 (2004).

    CAS  Google Scholar 

  9. B.L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J.R. Reynolds: Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater. 12(7), 481 (2000).

    CAS  Google Scholar 

  10. K.E. Aasmundtveit, E.J. Samuelsen, O. Inganas, L.A.A. Pettersson, T. Johansson, and S. Ferrer: Structural aspects of electrochemical doping and dedoping of poly(3,4-ethylenedioxythiophene). Synth. Met. 113(1–2), 93 (2000).

    CAS  Google Scholar 

  11. S.C.J. Meskers, J.K.J. van Duren, R.A.J. Janssen, F. Louwet, and L. Groenendaal: Infrared detectors with poly(3,4-ethylenedioxy thiophene)/poly(styrene sulfonic acid) (PEDOT/PSS) as the active material. Adv. Mater. 15(7–8), 613 (2003).

    CAS  Google Scholar 

  12. D. Hohnholz, A.G. MacDiarmid, D.M. Sarno, and W.E. Jones: Uniform thin films of poly-3,4-ethylenedioxythiophene (PEDOT) prepared by in-situ deposition. Chem. Commun. (23), 2444 (2001).

  13. J.W. Lee, F. Serna, J. Nickels, and C.E. Schmidt: Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion. Biomacromolecules 7(6), 1692 (2006).

    CAS  Google Scholar 

  14. Y.H. Xiao, X.Y. Cui, and D.C. Martin: Electrochemical polymerization and properties of PEDOT/S-EDOT on neural microelectrode arrays. J. Electroanal. Chem. 573(1), 43 (2004).

    CAS  Google Scholar 

  15. Z.Y. Zhang, Y.J. Tao, X.Q. Xu, Y.J. Zhou, H.F. Cheng, and W.W. Zheng: Multicolor electrochromism of low-bandgap copolymers based on pyrrole and 3,4-ethylenedioxythiophene: Fine-tuning colors through feed ratio. J. Appl. Polym. Sci. 129(3), 1506 (2013).

    CAS  Google Scholar 

  16. C. Zhang, Y. Xu, N.C. Wang, Y. Xu, W.Q. Xiang, M. Ouyang, and C.N. Ma: Electrosyntheses and characterizations of novel electrochromic copolymers based on pyrene and 3,4-ethylenedioxythiophene. Electrochim. Acta 55(1), 13 (2009).

    CAS  Google Scholar 

  17. S. Akoudad, and J. Roncali: Modification of the electrochemical and electronic properties of electrogenerated poly(3,4-ethylenedioxythiophene) by hydroxymethyl and oligo(oxyethylene)substituents. Electrochem. Commun. 2(1), 72 (2000).

    CAS  Google Scholar 

  18. E.M. Ali, E.A.B. Kantchev, H.H. Yu, and J.Y. Ying: Conductivity shift of polyethylenedioxythiophenes in aqueous solutions from side-chain charge perturbation. Macromolecules 40(17), 6025 (2007).

    CAS  Google Scholar 

  19. K. Krishnamoorthy, M. Kanungo, A.Q. Contractor, and A. Kumar: Electrochromic polymer based on a rigid cyanobiphenyl substituted 3,4-ethylenedioxythiophene. Synth. Met. 124(2–3), 471 (2001).

    CAS  Google Scholar 

  20. A.S. Sarac, G. Sonmez, and F.Ã. Cebeci: Electrochemical synthesis and structural studies of polypyrroles, poly(3,4-ethylene-dioxythiophene)s and copolymers of pyrrole and 3,4-ethylenedioxythiophene on carbon fibre microelectrodes. J. Appl. Electrochem. 33(3–4), 295 (2003).

    CAS  Google Scholar 

  21. J.K. Xu, G.M. Nie, S.S. Zhang, X.J. Han, J. Hou, and S.Z. Pu: Electrochemical copolymerization of indole and 3,4-ethylenedioxythiophene. J. Mater. Sci. 40(11), 2867 (2005).

    CAS  Google Scholar 

  22. T. Yohannes, J.C. Carlberg, O. Inganãs, and T. Solomon: Electrochemical and spectroscopic characteristics of copolymers electrochemically synthesized from 3-methylthiophene and 3,4-ethylenedioxy thiophene. Synth. Met. 88(1), 15 (1997).

    CAS  Google Scholar 

  23. L.K. Povlich, J.C. Cho, M.K. Leach, J.M. Corey, J. Kim, and D.C. Martin: Synthesis, copolymerization and peptide-modification of carboxylic acid-functionalized 3,4-ethylenedioxythiophene (EDOTacid) for neural electrode interfaces. Biochim. Biophys. Acta 1830(9), 4288 (2013).

    CAS  Google Scholar 

  24. S.C. Luo, E.M. Ali, N.C. Tansil, H.H. Yu, S. Gao, E.A.B. Kantchev, and J.Y. Ying: Poly(3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces: Thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatibility. Langmuir 24(15), 8071 (2008).

    CAS  Google Scholar 

  25. J.Y. Lee, E.D. Jeong, C.W. Ahn, and J.W. Lee: Bioactive conducting scaffolds: Active ester-functionalized polyterthiophene. Synth. Met. 185, 66 (2013).

    Google Scholar 

  26. A. Tiraferri and M. Elimelech: Direct quantification of negatively charged functional groups on membrane surfaces. J. Membr. Sci. 389, 499 (2012).

    CAS  Google Scholar 

  27. I. Djordjevic, N.R. Choudhury, N.K. Dutta, S. Kumar, E.J. Szili, and D.A. Steele: Polyoctanediol citrate/sebacate bioelastomer films: Surface morphology, chemistry and functionality. J. Biomater. Sci., Polym. Ed. 21(2), 237 (2010).

    CAS  Google Scholar 

  28. S.K.M. Jonsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A.W. Denier van der Gon, W.R. Salaneck, and M. Fahlman: The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Synth. Met. 139(1), 1 (2003).

    CAS  Google Scholar 

  29. C. Sriprachuabwong, C. Karuwan, A. Wisitsorrat, D. Phokharatkul, T. Lomas, P. Sritongkham, and A. Tuantranont: Inkjet-printed graphene-PEDOT: PSS modified screen printed carbon electrode for biochemical sensing. J. Mater. Chem. 22(12), 5478 (2012).

    CAS  Google Scholar 

  30. M. Dobbelin, R. Marcilla, C. Tollan, J.A. Pomposo, J.R. Sarasua, and D. Mecerreyes: A new approach to hydrophobic and water-resistant poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) films using ionic liquids. J. Mater. Chem. 18(44), 5354 (2008).

    CAS  Google Scholar 

  31. J. Drelich, J.L. Wilbur, J.D. Miller, and G.M. Whitesides: Contact angles for liquid drops at a model heterogeneous surface consisting of alternating and parallel hydrophobic hydrophilic strips. Langmuir 12(7), 1913 (1996).

    CAS  Google Scholar 

  32. R.A. Green, N.H. Lovell, and L.A. Poole-Warren: Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties. Acta Biomater. 6(1), 63 (2010).

    CAS  Google Scholar 

  33. D.H. Kim, S.M. Richardson-Burns, J.L. Hendricks, C. Sequera, and D.C. Martin: Effect of immobilized nerve growth factor on conductive polymers: Electrical properties and cellular response. Adv. Funct. Mater. 17(1), 79 (2007).

    CAS  Google Scholar 

  34. R.A. Green, N.H. Lovell, and L.A. Poole-Warren: Cell attachment functionality of bioactive conducting polymers for neural interfaces. Biomaterials 30(22), 3637 (2009).

    CAS  Google Scholar 

  35. M.R. Abidian, D.H. Kim, and D.C. Martin: Conducting-polymer nanotubes for controlled drug release. Adv. Mater. 18(4), 405 (2006).

    CAS  Google Scholar 

  36. S.M. Richardson-Burns, J.L. Hendricks, B. Foster, L.K. Povlich, D.H. Kim, and D.C. Martin: Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 28(8), 1539 (2007).

    CAS  Google Scholar 

  37. S.C. Luo, J. Sekine, B. Zhu, H.C. Zhao, A. Nakao, and H.H. Yu: Polydioxythiophene nanodots, nonowires, nano-networks, and tubular structures: The effect of functional groups and temperature in template-free electropolymerization. ACS Nano 6(4), 3018 (2012).

    CAS  Google Scholar 

  38. A. Bolognesi, P. DiGianvincenzo, U. Giovanella, R. Mendichi, and A.G. Schieroni: Polystyrene functionalized with EDOT oligomers. Eur. Polym. J. 44(3), 793 (2008).

    CAS  Google Scholar 

  39. M. Lapkowski and A. Pron: Electrochemical oxidation of poly(3,4-ethylenedioxythiophene)–“in situ” conductivity and spectroscopic investigations. Synth. Met. 110(1), 79 (2000).

    CAS  Google Scholar 

  40. J. Hwang, D.B. Tanner, I. Schwendeman, and J.R. Reynolds: Optical properties of nondegenerate ground-state polymers: Three dioxythiophene-based conjugated polymers. Phys. Rev. B 67(11), (2003).

  41. F. Blanchard, B. Carre, F. Bonhomme, P. Biensan, H. Pages, and D. Lemordant: Study of poly(3,4-ethylenedioxythiophene) films prepared in propylene carbonate solutions containing different lithium salts. J. Electroanal. Chem. 569(2), 203 (2004).

    CAS  Google Scholar 

  42. R. Kiefer, G.A. Bowmaker, R.P. Cooney, P.A. Kilmartin, and J. Travas-Sejdic: Cation driven actuation for free standing PEDOT films prepared from propylene carbonate electrolytes containing TBACF3SO3. Electrochim. Acta 53(5), 2593 (2008).

    CAS  Google Scholar 

  43. C.C. Chang, L.J. Her, and J.L. Hong: Copolymer from electropolymerization of thiophene and 3,4-ethylenedioxythiophene and its use as cathode for lithium ion battery. Electrochim. Acta 50(22), 4461 (2005).

    CAS  Google Scholar 

  44. A. Lima, P. Schottland, S. Sadki, and C. Chevrot: Electropolymerization of 3,4-ethylenedioxythiophene and 3,4-ethylenedioxythiophene methanol in the presence of dodecylbenzenesulfonate. Synth. Met. 93(1), 33 (1998).

    CAS  Google Scholar 

  45. N. Hameed, S.P. Thomas, R. Abraham, and S. Thomas: Morphology and contact angle studies of poly(styrene-co-acrylonitrile) modified epoxy resin blends and their glass fibre reinforced composites. eXPRESS Polym. Lett. 1(6), 345 (2007).

    CAS  Google Scholar 

  46. L. Feng, S.H. Li, Y.S. Li, H.J. Li, L.J. Zhang, J. Zhai, Y.L. Song, B.Q. Liu, L. Jiang, and D.B. Zhu: Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 14(24), 1857 (2002).

    CAS  Google Scholar 

  47. A. Lafuma and D. Quere: Superhydrophobic states. Nat. Mater. 2(7), 457 (2003).

    CAS  Google Scholar 

  48. W.J. Doherty, R.J. Wysocki, N.R. Armstrong, and S.S. Saavedra: Electrochemical copolymerization and spectroelectrochemical characterization of 3,4-ethylenedioxythiophene and 3,4-ethylenedioxythiophene-methanol copolymers on indium-tin oxide. Macromolecules 39(13), 4418 (2006).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported in part by the National Science Foundation (DMR-1103027) and the University of Delaware. We would like to thank Inci Ruzybayev and Dr. Ismat Shah for help with XPS measurements on the copolymer film samples. DCM is a co-founder and the Chief Scientific Officer for Biotectix LLC, a University of Michigan spin-off company that is actively investigating the use of conjugated polymers for interfacing biomedical devices with living tissue.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kristi L. Kiick or David C. Martin.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagwat, N., Kiick, K.L. & Martin, D.C. Electrochemical deposition and characterization of carboxylic acid functionalized PEDOT copolymers. Journal of Materials Research 29, 2835–2844 (2014). https://doi.org/10.1557/jmr.2014.314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.314

Navigation