Skip to main content
Log in

Compressive strain-induced metal–insulator transition in orthorhombic SrIrO3 thin films

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Orthorhombic SrIrO3 is a correlated metal whose electronic properties are highly susceptible to external perturbations due to the comparable interactions of spin–orbit interaction and electronic correlation. We have investigated the electronic properties of epitaxial orthorhombic SrIrO3 thin-films under compressive strain using transport measurements, optical absorption spectra, and magnetoresistance. The metastable, orthorhombic SrIrO3 thin-films are synthesized on various substrates using an epi-stabilization technique. We have observed that as in-plane lattice compression is increased, the dc-resistivity (ρ) of the thin films increases by a few orders of magnitude, and the dρ/d T changes from positive to negative values. However, optical absorption spectra show Drude-like, metallic responses without an optical gap opening for all compressively strained thin films. Transport measurements under magnetic fields show negative magnetoresistance at low temperature for compressively strained thin-films. Our results suggest that weak localization is responsible for the strain-induced metal–insulator transition for the orthorhombic SrIrO3 thin-films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. S. Moon, H. Jin, K. Kim, W. Choi, Y. Lee, J. Yu, G. Cao, A. Sumi, H. Funakubo, C. Bernhard, and T. Noh: Dimensionality-controlled insulator-metal transition and correlated metallic state in 5d transition metal oxides Srn+1IrnO3n+1 (n=1, 2, and ∞). Phys. Rev. Lett. 101(22), 226402 (2008).

    Article  CAS  Google Scholar 

  2. B. Kim, H. Jin, S. Moon, J.Y. Kim, B.G. Park, C. Leem, J. Yu, T. Noh, C. Kim, S.J. Oh, J.H. Park, V. Durairaj, G. Cao, and E. Rotenberg: Novel Jeff = 1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. Phys. Rev. Lett. 101(7), 076402 (2008).

    Article  CAS  Google Scholar 

  3. A.S. Erickson, S. Misra, G.J. Miller, R.R. Gupta, Z. Schlesinger, W.A. Harrison, J.M. Kim, and I.R. Fisher: Ferromagnetism in the Mott insulator Ba2NaOsO6. Phys. Rev. Lett. 99(1), 016404 (2007).

    Article  CAS  Google Scholar 

  4. J-M. Carter, V.V. Shankar, M.A. Zeb, and H-Y. Kee: Semimetal and topological insulator in perovskite iridates. Phys. Rev. B 85(11), 115105 (2012).

    Article  Google Scholar 

  5. H. Watanabe, T. Shirakawa, and S. Yunoki: Microscopic study of a spin-orbit-induced Mott insulator in Ir oxides. Phys. Rev. Lett. 105(21), 216410 (2010).

    Article  Google Scholar 

  6. A. Shitade, H. Katsura, J. Kunes, X.L. Qi, S.C. Zhang, and N. Nagaosa: Quantum spin Hall effect in a transition metal oxide Na2IrO3. Phys. Rev. Lett. 102(25), 256403 (2009).

    Article  Google Scholar 

  7. X. Wan, A.M. Turner, A. Vishwanath, and S.Y. Savrasov: Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83(20), 205101 (2011).

    Article  Google Scholar 

  8. C. Rayan Serrao, J. Liu, J.T. Heron, G. Singh-Bhalla, A. Yadav, S.J. Suresha, R.J. Paull, D. Yi, J.H. Chu, M. Trassin, A. Vishwanath, E. Arenholz, C. Frontera, J. Železný, T. Jungwirth, X. Marti, and R. Ramesh: Epitaxy-distorted spin-orbit Mott insulator in Sr2IrO4 thin films. Phys. Rev. B 87(8), 085121 (2013).

    Article  Google Scholar 

  9. J. Nichols, J. Terzic, E.G. Bittle, O.B. Korneta, L.E. De Long, J.W. Brill, G. Cao, and S.S.A. Seo: Tuning electronic structure via epitaxial strain in Sr2IrO4 thin films. Appl. Phys. Lett. 102(14), 141908 (2013).

    Article  Google Scholar 

  10. N. Mott: Conductivity, localization, and the mobility edge. In The Physics of Hydrogenated Amorphous Silicon II, J. Joannopoulos and G. Lucovsky ed.; (Springer, Berlin, Heidelberg, 1984); p. 169.

    Chapter  Google Scholar 

  11. J.M. Longo, J.A. Kafalas, and R.J. Arnott: Structure and properties of the high and low pressure forms of SrIrO3. J. Solid State Chem. 3(2), 174 (1971).

    Article  CAS  Google Scholar 

  12. J.G. Zhao, L.X. Yang, Y. Yu, F.Y. Li, R.C. Yu, Z. Fang, L.C. Chen, and C.Q. Jin: High-pressure synthesis of orthorhombic SrIrO3 perovskite and its positive magnetoresistance. J. Appl. Phys. 103(10), 103706 (2008).

    Article  Google Scholar 

  13. K. Yong Kwan, S. Akihiro, T. Kenji, Y. Shintaro, I. Shinichi, W. Takayuki, A. Kensuke, K. Satoru, S. Keisuke, and F. Hiroshi: Metalorganic chemical vapor deposition of epitaxial perovskite SrIrO3 films on (100)SrTiO3 substrates. Jpn. J. Appl. Phys. 45(1L), L36 (2006).

    Google Scholar 

  14. S.Y. Jang, S.J. Moon, B.C. Jeon, and J.S. Chung: PLD growth of epitaxially-stabilized 5d perovskite SrIrO3 thin films. J. Korean Phys. Soc. 56(6), 1814 (2010).

    Article  CAS  Google Scholar 

  15. A. Biswas, K-S. Kim, and Y.H. Jeong: Metal insulator transitions in perovskite SrIrO3 thin films: Role of disorder and correlation. ArXiv 1312, 2716 (2013).

    Google Scholar 

  16. S.Y. Jang, H. Kim, S.J. Moon, W.S. Choi, B.C. Jeon, J. Yu, and T.W. Noh: The electronic structure of epitaxially stabilized 5d perovskite Ca1-xSrxIrO3 (x = 0, 0.5, and 1) thin films: The role of strong spin-orbit coupling. J. Phys.: Condens. Matter 22(48), 485602 (2010).

    CAS  Google Scholar 

  17. J. Liu, J-H. Chu, C. Rayan Serrao, D. Yi, J. Koralek, C. Nelson, C. Frontera, D. Kriegner, L. Horak, E. Arenholz, J. Orenstein, A. Vishwanath, X. Marti, and R. Ramesh: Tuning the electronic properties of Jeff = 1/2 correlated semimetal in epitaxial perovskite SrIrO3. ArXiv 1305, 1732 (2013).

    Google Scholar 

  18. N. Gayathri, A.K. Raychaudhuri, X.Q. Xu, J.L. Peng, and R.L. Greene: Electronic conduction in LaNiO3-δ: The dependence on the oxygen stoichiometry. J. Phys.: Condens. Matter 10(6), 1323 (1998).

    CAS  Google Scholar 

  19. F.X. Wu, J. Zhou, L.Y. Zhang, Y.B. Chen, S.T. Zhang, Z.B. Gu, S.H. Yao, and Y.F. Chen: Metal-insulator transition in SrIrO3 with strong spin-orbit interaction. J. Phys.: Condens. Matter 25(12), 125604 (2013).

    Google Scholar 

  20. G. Bergmann: Weak localization in thin films: A time-of-flight experiment with conduction electrons. Phys. Rep. 107(1), 1 (1984).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would gratefully like to thank the National Science Foundation through Grant Nos. EPS-0814194 (the Center for Advanced Materials), DMR-1262261 (JWB), DMR-0856234 (GC), and DMR-1265162 (GC), and the Kentucky Science and Engineering Foundation with the Kentucky Science and Technology Corporation through Grant Agreement No. KSEF-148-502-12-303 (SSAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung S.Ambrose Seo.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruenewald, J.H., Nichols, J., Terzic, J. et al. Compressive strain-induced metal–insulator transition in orthorhombic SrIrO3 thin films. Journal of Materials Research 29, 2491–2496 (2014). https://doi.org/10.1557/jmr.2014.288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.288

Navigation