Abstract
Orthorhombic SrIrO3 is a correlated metal whose electronic properties are highly susceptible to external perturbations due to the comparable interactions of spin–orbit interaction and electronic correlation. We have investigated the electronic properties of epitaxial orthorhombic SrIrO3 thin-films under compressive strain using transport measurements, optical absorption spectra, and magnetoresistance. The metastable, orthorhombic SrIrO3 thin-films are synthesized on various substrates using an epi-stabilization technique. We have observed that as in-plane lattice compression is increased, the dc-resistivity (ρ) of the thin films increases by a few orders of magnitude, and the dρ/d T changes from positive to negative values. However, optical absorption spectra show Drude-like, metallic responses without an optical gap opening for all compressively strained thin films. Transport measurements under magnetic fields show negative magnetoresistance at low temperature for compressively strained thin-films. Our results suggest that weak localization is responsible for the strain-induced metal–insulator transition for the orthorhombic SrIrO3 thin-films.
Similar content being viewed by others
References
S. Moon, H. Jin, K. Kim, W. Choi, Y. Lee, J. Yu, G. Cao, A. Sumi, H. Funakubo, C. Bernhard, and T. Noh: Dimensionality-controlled insulator-metal transition and correlated metallic state in 5d transition metal oxides Srn+1IrnO3n+1 (n=1, 2, and ∞). Phys. Rev. Lett. 101(22), 226402 (2008).
B. Kim, H. Jin, S. Moon, J.Y. Kim, B.G. Park, C. Leem, J. Yu, T. Noh, C. Kim, S.J. Oh, J.H. Park, V. Durairaj, G. Cao, and E. Rotenberg: Novel Jeff = 1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. Phys. Rev. Lett. 101(7), 076402 (2008).
A.S. Erickson, S. Misra, G.J. Miller, R.R. Gupta, Z. Schlesinger, W.A. Harrison, J.M. Kim, and I.R. Fisher: Ferromagnetism in the Mott insulator Ba2NaOsO6. Phys. Rev. Lett. 99(1), 016404 (2007).
J-M. Carter, V.V. Shankar, M.A. Zeb, and H-Y. Kee: Semimetal and topological insulator in perovskite iridates. Phys. Rev. B 85(11), 115105 (2012).
H. Watanabe, T. Shirakawa, and S. Yunoki: Microscopic study of a spin-orbit-induced Mott insulator in Ir oxides. Phys. Rev. Lett. 105(21), 216410 (2010).
A. Shitade, H. Katsura, J. Kunes, X.L. Qi, S.C. Zhang, and N. Nagaosa: Quantum spin Hall effect in a transition metal oxide Na2IrO3. Phys. Rev. Lett. 102(25), 256403 (2009).
X. Wan, A.M. Turner, A. Vishwanath, and S.Y. Savrasov: Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83(20), 205101 (2011).
C. Rayan Serrao, J. Liu, J.T. Heron, G. Singh-Bhalla, A. Yadav, S.J. Suresha, R.J. Paull, D. Yi, J.H. Chu, M. Trassin, A. Vishwanath, E. Arenholz, C. Frontera, J. Železný, T. Jungwirth, X. Marti, and R. Ramesh: Epitaxy-distorted spin-orbit Mott insulator in Sr2IrO4 thin films. Phys. Rev. B 87(8), 085121 (2013).
J. Nichols, J. Terzic, E.G. Bittle, O.B. Korneta, L.E. De Long, J.W. Brill, G. Cao, and S.S.A. Seo: Tuning electronic structure via epitaxial strain in Sr2IrO4 thin films. Appl. Phys. Lett. 102(14), 141908 (2013).
N. Mott: Conductivity, localization, and the mobility edge. In The Physics of Hydrogenated Amorphous Silicon II, J. Joannopoulos and G. Lucovsky ed.; (Springer, Berlin, Heidelberg, 1984); p. 169.
J.M. Longo, J.A. Kafalas, and R.J. Arnott: Structure and properties of the high and low pressure forms of SrIrO3. J. Solid State Chem. 3(2), 174 (1971).
J.G. Zhao, L.X. Yang, Y. Yu, F.Y. Li, R.C. Yu, Z. Fang, L.C. Chen, and C.Q. Jin: High-pressure synthesis of orthorhombic SrIrO3 perovskite and its positive magnetoresistance. J. Appl. Phys. 103(10), 103706 (2008).
K. Yong Kwan, S. Akihiro, T. Kenji, Y. Shintaro, I. Shinichi, W. Takayuki, A. Kensuke, K. Satoru, S. Keisuke, and F. Hiroshi: Metalorganic chemical vapor deposition of epitaxial perovskite SrIrO3 films on (100)SrTiO3 substrates. Jpn. J. Appl. Phys. 45(1L), L36 (2006).
S.Y. Jang, S.J. Moon, B.C. Jeon, and J.S. Chung: PLD growth of epitaxially-stabilized 5d perovskite SrIrO3 thin films. J. Korean Phys. Soc. 56(6), 1814 (2010).
A. Biswas, K-S. Kim, and Y.H. Jeong: Metal insulator transitions in perovskite SrIrO3 thin films: Role of disorder and correlation. ArXiv 1312, 2716 (2013).
S.Y. Jang, H. Kim, S.J. Moon, W.S. Choi, B.C. Jeon, J. Yu, and T.W. Noh: The electronic structure of epitaxially stabilized 5d perovskite Ca1-xSrxIrO3 (x = 0, 0.5, and 1) thin films: The role of strong spin-orbit coupling. J. Phys.: Condens. Matter 22(48), 485602 (2010).
J. Liu, J-H. Chu, C. Rayan Serrao, D. Yi, J. Koralek, C. Nelson, C. Frontera, D. Kriegner, L. Horak, E. Arenholz, J. Orenstein, A. Vishwanath, X. Marti, and R. Ramesh: Tuning the electronic properties of Jeff = 1/2 correlated semimetal in epitaxial perovskite SrIrO3. ArXiv 1305, 1732 (2013).
N. Gayathri, A.K. Raychaudhuri, X.Q. Xu, J.L. Peng, and R.L. Greene: Electronic conduction in LaNiO3-δ: The dependence on the oxygen stoichiometry. J. Phys.: Condens. Matter 10(6), 1323 (1998).
F.X. Wu, J. Zhou, L.Y. Zhang, Y.B. Chen, S.T. Zhang, Z.B. Gu, S.H. Yao, and Y.F. Chen: Metal-insulator transition in SrIrO3 with strong spin-orbit interaction. J. Phys.: Condens. Matter 25(12), 125604 (2013).
G. Bergmann: Weak localization in thin films: A time-of-flight experiment with conduction electrons. Phys. Rep. 107(1), 1 (1984).
ACKNOWLEDGMENTS
The authors would gratefully like to thank the National Science Foundation through Grant Nos. EPS-0814194 (the Center for Advanced Materials), DMR-1262261 (JWB), DMR-0856234 (GC), and DMR-1265162 (GC), and the Kentucky Science and Engineering Foundation with the Kentucky Science and Technology Corporation through Grant Agreement No. KSEF-148-502-12-303 (SSAS).
Author information
Authors and Affiliations
Corresponding author
Additional information
This paper has been selected as an Invited Feature Paper.
Rights and permissions
About this article
Cite this article
Gruenewald, J.H., Nichols, J., Terzic, J. et al. Compressive strain-induced metal–insulator transition in orthorhombic SrIrO3 thin films. Journal of Materials Research 29, 2491–2496 (2014). https://doi.org/10.1557/jmr.2014.288
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2014.288